tfrecord 的读入与训练 MNIST (训练集 + 验证集)
代码
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1"
os.system("rm -r logs")
import tensorflow as tf
get_ipython().run_line_magic('matplotlib', 'inline')
import matplotlib.pyplot as plt
from PIL import Image
import multiprocessing
# In[2]:
TrainPath = '/home/winsoul/disk/MNIST/data/tfrecord/train.tfrecords'
TestPath = '/home/winsoul/disk/MNIST/data/tfrecord/test.tfrecords'
# BatchSize = 64
epoch = 10
DisplayStep = 20
SaveModelStep = 1000
# In[3]:
def read_tfrecord(TFRecordPath):
with tf.Session() as sess:
feature = {
'image': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64)
}
# filename_queue = tf.train.string_input_producer([TFRecordPath], num_epochs = 1)
filename_queue = tf.train.string_input_producer([TFRecordPath])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example, features = feature)
image = tf.decode_raw(features['image'], tf.float32)
image = tf.reshape(image, [28, 28, 1])
label = tf.cast(features['label'], tf.int32)
return image, label
# In[4]:
def conv_layer(X, k, s, channels_in, channels_out, name = 'CONV'):
with tf.name_scope(name):
W = tf.Variable(tf.truncated_normal([k, k, channels_in, channels_out], stddev = 0.1));
b = tf.Variable(tf.constant(0.1, shape = [channels_out]))
conv = tf.nn.conv2d(X, W, strides = [1, s, s, 1], padding = 'SAME')
result = tf.nn.relu(conv + b)
tf.summary.histogram('weights', W)
tf.summary.histogram('biases', b)
tf.summary.histogram('activations', result)
return result
# In[5]:
def pool_layer(X, k, s, strr = 'SAME', pool_type = 'MAX'):
if pool_type == 'MAX':
result = tf.nn.max_pool(X,
ksize = [1, k, k, 1],
strides = [1, s, s, 1],
padding = strr)
else:
result = tf.nn.avg_pool(X,
ksize = [1, k, k, 1],
strides = [1, s, s, 1],
padding = strr)
return result
# In[6]:
def fc_layer(X, neurons_in, neurons_out, last = False, name = 'FC'):
with tf.name_scope(name):
W = tf.Variable(tf.truncated_normal([neurons_in, neurons_out], stddev = 0.1))
b = tf.Variable(tf.constant(0.1, shape = [neurons_out]))
tf.summary.histogram('weights', W)
tf.summary.histogram('biases', b)
if last == False:
result = tf.nn.relu(tf.matmul(X, W) + b)
else:
result = tf.nn.softmax(tf.matmul(X, W) + b)
tf.summary.histogram('activations', result)
return result
# In[7]:
def Network(BatchSize, learning_rate):
with tf.Session() as sess:
in_training = tf.placeholder(dtype = tf.bool, shape=())
keep_prob = tf.placeholder('float32', name = 'keep_prob')
judge = tf.Print(in_training, ['in_training:', in_training])
image_train, label_train = read_tfrecord(TrainPath)
image_val, label_val = read_tfrecord(TestPath)
# image, label = read_tfrecord(TrainPath) if tf.equal(use_train_data, use_train_data_judge) else read_tfrecord(TestPath)
# image, label = tf.cond(use_train_data, lambda: read_tfrecord(TrainPath), lambda: read_tfrecord(TestPath))
image_train_Batch, label_train_Batch = tf.train.shuffle_batch([image_train, label_train],
batch_size = BatchSize,
capacity = BatchSize*3 + 200,
min_after_dequeue = BatchSize)
image_val_Batch, label_val_Batch = tf.train.shuffle_batch([image_val, label_val],
batch_size = BatchSize,
capacity = BatchSize*3 + 200,
min_after_dequeue = BatchSize)
image_Batch = tf.cond(in_training, lambda: image_train_Batch, lambda: image_val_Batch)
label_Batch = tf.cond(in_training, lambda: label_train_Batch, lambda: label_val_Batch)
label_Batch = tf.one_hot(label_Batch, depth = 10)
X = tf.identity(image_Batch)
y = tf.identity(label_Batch)
with tf.name_scope('input_reshape'):
tf.summary.image('input', X, 32)
conv1 = conv_layer(X, 5, 1, 1, 32, "conv1")
pool1 = pool_layer(conv1, 2, 2, "SAME", "MAX")
conv2 = conv_layer(pool1, 5, 1, 32, 64, 'conv2')
pool2 = pool_layer(conv2, 2, 2, "SAME", "MAX")
print(pool2.shape)
drop1 = tf.nn.dropout(pool2, keep_prob)
fc1 = fc_layer(tf.reshape(drop1, [-1, 7 * 7 * 64]), 7 * 7 * 64, 1024)
drop2 = tf.nn.dropout(fc1, keep_prob)
y_result = fc_layer(drop2, 1024, 10, True)
with tf.name_scope('summaries'):
cross_entropy = -tf.reduce_mean(y * tf.log(tf.clip_by_value(y_result, 1e-3,1.0)))
train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
#train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)
corrent_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_result, 1))
accuracy = tf.reduce_mean(tf.cast(corrent_prediction, 'float', name = 'accuracy'))
tf.summary.scalar("loss", cross_entropy)
tf.summary.scalar("accuracy", accuracy)
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord = coord)
merge_summary = tf.summary.merge_all()
summary__train_writer = tf.summary.FileWriter("./logs/train" , sess.graph)
summary_val_writer = tf.summary.FileWriter("./logs/test")
try:
batch_index = 0
while not coord.should_stop():
sess.run([train_step], feed_dict = {keep_prob: 0.5, in_training: True})
if batch_index % 10 == 0:
summary_train, _, acc, loss = sess.run([merge_summary, train_step, accuracy, cross_entropy], feed_dict = {keep_prob: 1.0, in_training: True})
summary__train_writer.add_summary(summary_train, batch_index)
summary_val, acc, loss = sess.run([merge_summary, accuracy, cross_entropy], feed_dict = {keep_prob: 1.0, in_training: False})
summary_val_writer.add_summary(summary_val, batch_index)
print(str(batch_index) + 'train:' + ' ' + str(acc) + ' ' + str(loss))
print(str(batch_index) + ' val: ' + ' ' + str(acc) + ' ' + str(loss))
batch_index += 1;
except tf.errors.OutOfRangeError:
print("OutofRangeError!")
finally:
print("Finish")
coord.request_stop()
coord.join(threads)
sess.close()
# In[8]:
def main():
Network(512, 0.0001)
# In[ ]:
if __name__ == '__main__':
main()