【575】连续卷积层

  对于连续的卷积层,filter 的维度是跟输入图像的维度一致

model = Sequential([
    Conv2D(8, 3, input_shape=(28, 28, 1), use_bias=False),
    Conv2D(16, 3, use_bias=False)
])

model.summary() 

  输出

Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_3 (Conv2D)            (None, 26, 26, 8)         72        
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 24, 24, 16)        1152      
=================================================================
Total params: 1,224
Trainable params: 1,224
Non-trainable params: 0
_________________________________________________________________

  其中:

  • 第一层的filter为 3x3x1x8=72(原始数据是 28x28x1,得到数据 26x26x8)

  • 第二层的filter为 3x3x8x16=1152(上一个数据是 26x26x8,得到数据 24x24x16)

【575】连续卷积层

上一篇:beta 总结


下一篇:数据分析师岗位分析