算法 中等 | 33. N皇后问题

算法 中等 | 33. N皇后问题

题目描述

n皇后问题是将n个皇后放置在n*n的棋盘上,皇后彼此之间不能相互攻击(任意两个皇后不能位于同一行,同一列,同一斜线)。

给定一个整数n,返回所有不同的n皇后问题的解决方案。

每个解决方案包含一个明确的n皇后放置布局,其中“Q”和“.”分别表示一个女王和一个空位置。

样例1

输入:1
输出:
   [["Q"]]

样例2

输入:4
输出:
[
  // Solution 1
  [".Q..",
   "...Q",
   "Q...",
   "..Q."
  ],
  // Solution 2
  ["..Q.",
   "Q...",
   "...Q",
   ".Q.."
  ]
]

java题解

暴力搜索,尝试可以放置的地点,返回每个方案即可

class Solution {
    List<List<String>> solveNQueens(int n) {
        List<List<String>> results = new ArrayList<>();
        if (n <= 0) {
            return results;
        }
        
        search(results, new ArrayList<Integer>(), n);
        return results;
    }
    
    /*
     * results store all of the chessboards
     * cols store the column indices for each row
     */
    private void search(List<List<String>> results,
                        List<Integer> cols,
                        int n) {
        if (cols.size() == n) {
            results.add(drawChessboard(cols));
            return;
        }
        
        for (int colIndex = 0; colIndex < n; colIndex++) {
            if (!isValid(cols, colIndex)) {
                continue;
            }
            cols.add(colIndex);
            search(results, cols, n);
            cols.remove(cols.size() - 1);
        }
    }
    
    private List<String> drawChessboard(List<Integer> cols) {
        List<String> chessboard = new ArrayList<>();
        for (int i = 0; i < cols.size(); i++) {
            StringBuilder sb = new StringBuilder();
            for (int j = 0; j < cols.size(); j++) {
                sb.append(j == cols.get(i) ? 'Q' : '.');
            }
            chessboard.add(sb.toString());
        }
        return chessboard;
    }
    
    private boolean isValid(List<Integer> cols, int column) {
        int row = cols.size();
        for (int rowIndex = 0; rowIndex < cols.size(); rowIndex++) {
            if (cols.get(rowIndex) == column) {
                return false;
            }
            if (rowIndex + cols.get(rowIndex) == row + column) {
                return false;
            }
            if (rowIndex - cols.get(rowIndex) == row - column) {
                return false;
            }
        }
        return true;
    }
}

C++题解

暴力搜索,尝试可以放置的地点,返回每个方案即可

class Solution {
public:
    vector<vector<string> > solveNQueens(int n) {
        // write your code here
        vector<vector<string> > result;
        if( n <= 0 )
        {
            return result;
        }
        vector<int> cols;
        search(n, cols, result);
        return result;
    }
    
    void search(int n, vector<int> &cols, vector<vector<string> > &result)
    {
        if(cols.size() == n)
        {
            result.push_back(drawResult(cols, n));
            return;
        }
        for(int col = 0; col < n; col++)
        {
            if(!isValid(cols, col))
            {
                continue;
            }
            cols.push_back(col);
            search(n, cols, result);
            cols.pop_back();
        }
    }
    bool isValid(vector<int> &cols, int col)
    {
        int row = cols.size();
        for(int i = 0; i < row; ++i)
        {
            if(cols[i] == col)
            {
                return false;
            }
            if(i - cols[i] == row - col)
            {
                return false;
            }
            if(i + cols[i] == row + col)
            {
                return false;
            }
        }
        return true;
    }
    
    vector<string> drawResult(vector<int> &cols, int n)
    {
        vector<string> result;
        for(int i = 0; i < cols.size(); ++i)
        {
            string temp(n, '.');
            temp[cols[i]] = 'Q';
            result.push_back(temp);
        }
        return result;
    }
};

python题解

是用排列式的深度优先搜索算法。

class Solution:
    def solveNQueens(self, n):
        results = []
        self.search(n, [], results)
        return results
        
    def search(self, n, cols, results):
        row = len(cols)
        if row == n:
            results.append(self.draw_chessboard(cols))
            return

        for col in range(n):
            if not self.is_valid(cols, row, col):
                continue
            cols.append(col)
            self.search(n, cols, results)
            cols.pop()
            
    def draw_chessboard(self, cols):
        n = len(cols)
        board = []
        for i in range(n):
            row = ['Q' if j == cols[i] else '.' for j in range(n)]
            board.append(''.join(row))
        return board
        
    def is_valid(self, cols, row, col):
        for r, c in enumerate(cols):
            if c == col:
                return False
            if r - c == row - col or r + c == row + col:
                return False
        return True
算法 中等 | 33. N皇后问题算法 中等 | 33. N皇后问题 CN_wanku 发布了152 篇原创文章 · 获赞 20 · 访问量 5345 私信 关注
上一篇:celery笔记


下一篇:17.ThinkPHP 扩展库:图像处理--生成缩略图