1.Seurat
2.SC3
https://bioconductor.org/packages/release/bioc/html/SC3.html
https://bioconductor.org/packages/release/bioc/vignettes/SC3/inst/doc/SC3.html#run-sc3
dim(rna)#18666 1047 # create a SingleCellExperiment object sce <- SingleCellExperiment( assays = list( counts = as.matrix(rna),#计数槽用于基因过滤,这是基于基因dropout率 logcounts = log2(as.matrix(rna) + 1) #主聚类算法采用Logcounts槽,该槽既包含归一化的表达式矩阵,又包含log-transform的表达式矩阵。 ) ) dim(sce)#18666 1047 # define feature names in feature_symbol column rowData(sce)$feature_symbol <- rownames(sce) # remove features with duplicated names 去除重复特征 sce <- sce[!duplicated(rowData(sce)$feature_symbol), ] sce <- sc3(sce, ks = 4:4, biology = TRUE) sc3_interactive(sce)#运行很慢,无法在新窗口显示结果 sc3_export_results_xls(sce) sce <- runPCA(sce) col_data <- colData(sce) head(col_data[ , grep("sc3_", colnames(col_data))]) plotPCA( sce, colour_by = "sc3_4_clusters", size_by = "sc3_4_log2_outlier_score" ) plotPCA( sce, colour_by = "sc3_4_clusters" )