题意
求
∑ i = 1 n ∑ j = 1 n φ ( gcd ( i , j ) ) \sum_{i=1}^{n}\sum_{j=1}^{n} \varphi(\gcd(i,j)) i=1∑nj=1∑nφ(gcd(i,j))
1 ≤ n ≤ 1 0 9 1 \le n \le 10^9 1≤n≤109,对 1 0 9 + 7 10^9+7 109+7 取模
分析:
枚举 gcd ( i , j ) \gcd(i,j) gcd(i,j)
∑ d = 1 n φ ( d ) ∑ i = 1 n ∑ j = 1 n [ gcd ( i , j ) = d ] \sum_{d=1}^{n}\varphi(d)\sum_{i=1}^{n}\sum_{j=1}^{n}[\gcd(i,j)=d] d=1∑nφ(d)i=1∑nj=1∑n[gcd(i,j)=d]
将 d d d 拿到上界
∑ d = 1 n φ ( d ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ [ gcd ( i , j ) = 1 ] \sum_{d=1}^{n}\varphi(d)\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{n}{d} \rfloor}[\gcd(i,j)=1] d=1∑nφ(d)i=1∑⌊dn⌋j=1∑⌊dn⌋[gcd(i,j)=1]
因为 ∑ i = 1 n ∑ i = 1 n [ gcd ( i , j ) = 1 ] = ∑ i = 1 n 2 φ ( i ) − 1 \sum\limits_{i=1}^{n}\sum\limits_{i=1}^{n}[\gcd(i,j)=1]=\sum\limits_{i=1}^{n}2\varphi(i)-1 i=1∑ni=1∑n[gcd(i,j)=1]=i=1∑n2φ(i)−1,所以
∑ d = 1 n φ ( d ) ( ∑ i = 1 ⌊ n d ⌋ 2 φ ( i ) − 1 ) \sum_{d=1}^{n}\varphi(d)(\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}2\varphi(i)-1) d=1∑nφ(d)(i=1∑⌊dn⌋2φ(i)−1)
再用一下杜教筛就好了
代码:
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 2e6 + 5, mod = 1e9 + 7;
int T, n, euler[N], primes[N], cnt, sum[N];
bool st[N];
unordered_map<int, int> mp;
void get_eulers(int n) {
euler[1] = 1;
for (int i = 2; i <= n; i ++) {
if (!st[i]) {
primes[cnt ++] = i;
euler[i] = i - 1;
}
for (int j = 0; primes[j] <= n / i; j ++) {
int t = primes[j] * i;
st[t] = 1;
if (i % primes[j] == 0) {
euler[t] = primes[j] * euler[i];
break;
}
euler[t] = (primes[j] - 1) * euler[i];
}
}
for (int i = 1; i <= n; i ++) sum[i] = (sum[i - 1] + euler[i]) % mod;
}
int Sum(int n) {
if (n < N) return sum[n];
if (mp[n]) return mp[n];
int res = n * (n + 1) / 2 % mod;
for (int l = 2, r; l <= n; l = r + 1) {
r = n / (n / l);
res = (res - Sum(n / l) * (r - l + 1) % mod + mod) % mod;
}
return mp[n] = res;
}
signed main() {
get_eulers(N - 1);
cin >> T;
while (T --) {
int res = 0;
cin >> n;
for (int l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
res = (res + (Sum(r) - Sum(l - 1)) * (2 * Sum(n / l) - 1) % mod + mod) % mod;
}
cout << res << endl;
}
}