Kafka 里面的信息是如何被消费的?

请谨记:使用 Kafka 很容易,但对 Kafka 集群进行搭建、维护与调优很麻烦。Kafka 集群需要有专人来维护,不要以为你能轻易胜任这个工作。

Kafka 是如何做到,对单个程序的多个进程而言,能持续消费,断点续传和并行消费;对多个程序而言又互不影响,各自独立。

一个 Kafka 可以有多个不同的队列,我们把这个队列叫做Topic,假设其中一个队列如下图所示:

Kafka 里面的信息是如何被消费的?

 

 

 信息从右边进去,从左边出来。如果这是Redis 的列表,那么它弹出一条信息以后,队列会变成下面这样:

Kafka 里面的信息是如何被消费的?

 

 

 

最左边的信息1不见了。所以即使程序在消费了信息1后立刻关闭,再重新打开,程序也会接着从信息2开始消费,不会把信息1重复消费两次。

但我如果有两个程序呢?程序1读取每一条数据,再转存到数据库。程序2读取每一条数据,再检查是否有关键词。这种情况下,信息1应该能被程序1消费,也能被程序2消费。但上面这种方案显然是不行的。当程序1消费了信息1,程序2就再也拿不到它了。

所以,在 Kafka 里面,信息会停留在队列里面,但对每一个程序来说,有一个单独的记号,来记录当前消费到了哪一条数据,如下图所示。

Kafka 里面的信息是如何被消费的?

当程序1要读取 Kafka 里面下一条数据时,Kafka 先把当前位置的标记向右移动一位,把新的这个值返回出来。标记移动与返回这两个操作合在一起算是一个原子操作,不会出现重复读取的问题。

程序1与程序2使用的是不同的标记,所以各自的标记指向哪个值,是互不影响的。

当增加一个程序3的时候,只需要再加一个标记即可。新的这个标记也不受前两个标记的影响。

这就实现了在多个不同的程序读取 Kafka 时,各自互不影响。

现在如果你觉得程序1消费太慢了,把程序1同时运行了3次,那么由于标记和移位是原子操作,即使你看起来程序是同时去读取 Kafka,但在内部 Kafka 也会对他们进行“排队”,从而使得他们返回的结果不重复,不遗漏。

如果你在网上看 Kafka 的教程,你会发现他们提到了一个叫做 Offset 的东西,实际上就是本文所说的各个程序里面指向当前数据的标记

你还会看到一个关键词叫做Group,实际上对应到本文的程序1程序2程序3

对同一个队列,如果多个程序使用不同的Group消费,那么他们读取的数据就互不干扰。

 

对同一个队列,相同 Group 的多个进程在消费数据时,看起来就像是在对 Redis 进行 lpop 操作一样。

最后,你在网上关于 Kafka 的文章里面,一定会看到一个词叫做Paritition或者中文分片。而且你会发现你无法理解这个东西。

没关系,忘记它吧。你只需要知道,一个 Topic 有多少个 Partition,那么你最多能启动多少个进程读取同一个 Group。——如果一个Topic有3个Partition,那么你只能最多开3个进程同时读相同的 Group。 Topic如果有5个Partition,那么你只能最多开5个进程读同一个 Group。

 



上一篇:docker IPsec 服务器


下一篇:【TcaplusDB知识库】修改游戏区修改表格组table group