导入类库
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier
线性回归
def price_predict():
# 数据有三个特征:距离地铁距离、附近小学数量、小区绿化率
X = np.array([[500.0, 3.0, 0.3], [1000.0, 1.0, 0.6], [750.0, 2.0, 0.3], [600.0, 5.0, 0.2], [1200.0, 1.0, 0.6]])
# 具有三个特征的房屋对应的房价
Y = np.array([10000, 9000, 8000, 12000, 8500])
# 标准化,按列转化,转化到数据均值为0方差为1的标准分布内
std_x = StandardScaler()
x_train = std_x.fit_transform(X)
std_y = StandardScaler()
y_train = std_y.fit_transform(Y.reshape(-1, 1))
# 构建线性预测模型
lr = LinearRegression()
# 模型在历史数据上进行训练,Y.reshape(-1,1)将Y变为二维数组,fit函数要求二维数组
lr.fit(x_train, y_train)
# 使用训练模型预测新房屋价格
x_predict = std_x.transform(np.array([[1300, 3.0, 0.4]]))
print(std_y.inverse_transform(lr.predict(x_predict)))
KNN
# K近邻分类(K表示以最近的几个邻居作为分类的指标)
# KNN表示了物以类聚人以群分的基本思考方法,最近的K个邻居是什么类别,预测样本就会被划为该类别
def knn_predict_rev():
# 数据理解为二维坐标上的6歌点
X = np.array([[1.0, 1.0], [1, 1.5], [0.5, 1.5], [3.0, 3.0], [3.0, 3.5], [2.8, 3.1]])
# 6个点的类别,按顺序和X依次对应
Y = np.array([0, 0, 0, 1, 1, 1])
# n_neighbors就是KNN中的K
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X, Y)
print(knn.predict(np.array([[2.0, 3.0]])))
决策树
def decide_play():
'''
ID3
:return:
'''
df = pd.read_csv('dtree.csv')
# 将数据转换为字典格式,orient='record'参数指定数据格式为{column:value}的形式
# 一个字典对应一行数据
dict_train = df.loc[:, ['Outlook', 'Temperatur', 'Humidity', 'Windy']].to_dict(orient='record')
# 如果pandas从DataFrame取出一列数据,该数据类型会变成Series
dict_target = pd.DataFrame(df['PlayGolf'], columns=['PlayGolf']).to_dict(orient='record')
# 训练数据字典向量化
dv_train = DictVectorizer()
x_train = dv_train.fit_transform(dict_train)
# 目标数据字典向量化
dv_target = DictVectorizer()
y_target = dv_target.fit_transform(dict_target)
# 创建决策树
d_tree = DecisionTreeClassifier()
# 训练数据
d_tree.fit(x_train, y_target)
data_predict = {
'Humidity': 85,
'Outlook': 'sunny',
'Temperatur': 85,
'Windy': False
}
# 标准化要预测的数据
x_data = dv_train.transform(data_predict)
# 预测数据并转换为原格式
print(dv_target.inverse_transform(d_tree.predict(x_data)))