期望得分0+0+40=40
实际得分0+0+20=20
T1 看了眼题面,觉得不可做,就跳了。。。主要是因为看到了奇怪的题目描述之后瞬间就不好了。
其实什么随机选还有什么求逆序对个数可以归纳一下,,,随机选择序列可以按照长度划分,对于长度相同的序列,由于每个数两两不同,所以大小关系是相同的,离散化后当成一种情况就好了。这样的话,设f[i]为长度为i的序列的逆序对个数,考虑一个逆序对
除以2是因为选的两个数成为逆序和不成为逆序概率相等
打个表发现对于所有i>=2,f[i]是\(\frac{4}{3}\)。
用归纳法
然后化简式子
\[ans=\frac{\sum^{n}_{i=0}{C^{2}_{i}*\frac{1}{2}*f[i]}}{n} \] \[\sum^{n}_{i=0}C^2_i=C^{3}_{n+1} \] \[ans=\frac{n^2-1}{9} \]T2 ,,,,,
T3,,
所有的合法图形只有六种,横着,竖着,斜着,还有九宫格里和四个角和中间的格,剩余的四个格和中间的格,正方形的四个角,分别求就行了,不会做图片,意会吧
T1
#include<bits/stdc++.h>
using namespace std;
const int mod=998244353;
#define int long long
inline int read()
{
int s=0;
char ch=getchar();
while(ch>'9'||ch<'0')
ch=getchar();
while(ch>='0'&&ch<='9')
{
s=(s<<1)+(s<<3)+(ch^48);
ch=getchar();
}
return s;
}
int fma(int x,int y)
{
int ans=1;
while(y)
{
if(y&1)
ans=ans*x%mod;
x=x*x%mod;
y>>=1;
}
return ans;
}
signed main()
{
long long n,t;
t=read();
while(t--)
{
n=read();
printf("%lld\n",((n+1)%mod*(2*n%mod+1)%mod*fma(18,mod-2)%mod-(1+n)%mod*fma(6,mod-2)%mod+mod)%mod);
}
return 0;
}
T3
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=4e5+11;
const int mod=3e5+7;
int n,m,k;
int jc[N],ny[N];
int qzh[N],qzh2[N];
inline int read()
{
int s=0;
char ch=getchar();
while(ch>'9'||ch<'0')
ch=getchar();
while(ch>='0'&&ch<='9')
{
s=(s<<1)+(s<<3)+(ch^48);
ch=getchar();
}
return s;
}
int fma(int x,int y)
{
int ans=1;
while(y)
{
if(y&1)
ans=ans*x%mod;
x=x*x%mod;
y>>=1;
}
return ans;
}
void pre()
{
jc[0]=1;
ny[0]=1;
for(int i=1;i<N;i++)
{
jc[i]=jc[i-1]*i%mod;
ny[i]=fma(jc[i],mod-2);
}
for(int i=1;i<N;i++)
{
qzh[i]=(qzh[i-1]+i)%mod;
qzh2[i]=(qzh2[i-1]+qzh[i])%mod;
}
return;
}
int C(int a,int b)
{
if(a>b)
return 0;
return jc[b]*ny[a]%mod*ny[b-a]%mod;
}
int lucas(int a,int b)
{
if(!a)
return 1;
return C(a%mod,b%mod)*lucas(a/mod,b/mod)%mod;
}
signed main()
{
int t=read();
pre();
while(t--)
{
n=read();
m=read();
k=read();
if(k>m&&k>n)
{
printf("%d\n",0);
continue;
}
if(k>5)
{
if(k>m&&k<=n)
{
printf("%lld\n",m%mod*lucas(k,n)%mod);
continue;
}
if(k>n&&k<=m)
{
printf("%lld\n",n%mod*lucas(k,m)%mod);
continue;
}
int minn=min(n,m);
int maxx=max(n,m);
int ans=(n%mod*lucas(k,m)%mod+m%mod*lucas(k,n)%mod)%mod;
ans=(ans+4*lucas(k+1,minn))%mod;
ans=(ans+2*(maxx-minn+1)%mod*lucas(k,minn)%mod)%mod;
printf("%lld\n",ans);
}
else
{
if(k==1)
printf("%lld\n",n%mod*(m%mod)%mod);
if(k==2)
{
int ans=0;
ans+=(n%mod*lucas(k,m)%mod+m%mod*lucas(k,n)%mod)%mod;
int minn=min(m,n);
int maxx=max(m,n);
ans=(ans+4*lucas(k+1,minn))%mod;
ans=(ans+2*(maxx-minn+1)%mod*lucas(k,minn)%mod)%mod;
printf("%lld\n",ans);
}
if(k==3)
{
int ans2=0;
int ans=0;
if(k<=m)
ans+=n%mod*lucas(k,m)%mod;
if(k<=n)
ans=(ans+m%mod*lucas(k,n)%mod)%mod;
int minn=min(m,n);
int maxx=max(m,n);
if(minn>=3)
{
ans=(ans+8*lucas(3,minn)%mod)%mod;
ans=(ans+4*(maxx-minn+1)%mod*lucas(2,minn)%mod)%mod;
int ed1=min((m+1)/2,n)%mod;
int ed2=min((n+1)/2,m)%mod;
m%=mod;
n%=mod;
ans=(ans+2*n*m%mod*(ed1-1)%mod+2*(ed1-1)*ed1%mod*(2*ed1-1)%mod*fma(3,mod-2)%mod-ed1*(ed1-1)%mod*(2*n+m)%mod+mod)%mod;
ans=(ans+2*n*m%mod*(ed2-1)%mod+2*(ed2-1)*ed2%mod*(2*ed2-1)%mod*fma(3,mod-2)%mod-ed2*(ed2-1)%mod*(2*m+n)%mod+mod)%mod;
}
if(minn>=2)
{
ans=(ans+4*lucas(4,minn)%mod)%mod;
ans=(ans+2*((maxx-minn+1)%mod)%mod*lucas(3,minn)%mod)%mod;
}
printf("%lld\n",ans);
}
if(k==4)
{
int ans=0;
if(k<=m)
ans+=n%mod*lucas(4,m)%mod;
if(k<=n)
ans+=m%mod*lucas(4,n)%mod;
int minn=min(n,m);
int maxx=max(n,m);
if(minn>=4)
{
ans=(ans+4*lucas(5,minn))%mod;
ans=(ans+2*(maxx-minn+1)%mod*lucas(4,minn))%mod;
}
if(n>=2&&m>=3)
{
int ed=min((m+1)/2,n)%mod;
ans=(ans+2*n%mod*(m%mod)%mod*(ed-1)%mod+2*(ed-1)*ed%mod*(2*ed-1)%mod*fma(3,mod-2)-ed*(ed-1)%mod*((2*n+m)%mod)%mod+mod)%mod;
}
if(n>=3&&m>=2)
{
int ed=min((n+1)/2,m)%mod;
ans=(ans+2*n%mod*(m%mod)%mod*(ed-1)%mod+2*(ed-1)*ed%mod*(2*ed-1)%mod*fma(3,mod-2)-ed*(ed-1)%mod*((2*m+n)%mod)%mod+mod)%mod;
}
int ed=minn%mod;
n%=mod;
m%=mod;
ans=(ans+n*m%mod*(ed-1)%mod+(ed-1)*ed%mod*(2*ed-1)%mod*fma(6,mod-2)-ed*(ed-1)%mod*(m+n)%mod*fma(2,mod-2)%mod+mod)%mod;
ed=(minn-1)/2%mod;
ans=(ans+5*(n*m%mod*ed%mod-(m+n)*2*(ed+1)%mod*ed%mod*fma(2,mod-2)%mod+4*(ed+1)*ed%mod*(2*ed+1)%mod*fma(6,mod-2)))%mod;
printf("%lld\n",ans);
}
if(k==5)
{
int ans=0;
if(k<=m)
ans+=n%mod*lucas(5,m)%mod;
if(k<=n)
ans=(ans+m%mod*lucas(5,n)%mod)%mod;
int minn=min(n,m);
int maxx=max(n,m);
if(minn>=5)
{
ans=(ans+4*lucas(6,minn)%mod)%mod;
ans=(ans+2*(maxx-minn+1)%mod*lucas(5,minn)%mod)%mod;
}
int ed=(minn-1)/2%mod;
m%=mod;
n%=mod;
ans=(ans+2*(n*m%mod*ed-(m+n)*2*(ed+1)%mod*ed%mod*fma(2,mod-2)%mod+4*(ed+1)*ed%mod*(2*ed+1)%mod*fma(6,mod-2)%mod))%mod;
printf("%lld\n",ans);
}
}
}
return 0;
}