一文读懂eBPF/XDP

XDP概述

XDP是Linux网络路径上内核集成的数据包处理器,具有安全、可编程、高性能的特点。当网卡驱动程序收到数据包时,该处理器执行BPF程序。XDP可以在数据包进入协议栈之前就进行处理,因此具有很高的性能,可用于DDoS防御、防火墙、负载均衡等领域。

XDP数据结构

XDP程序使用的数据结构是xdp_buff,而不是sk_buffxdp_buff可以视为sk_buff的轻量级版本。
两者的区别在于:sk_buff包含数据包的元数据,xdp_buff创建更早,不依赖与其他内核层,因此XDP可以更快的获取和处理数据包。

xdp_buff数据结构定义如下:

// /linux/include/net/xdp.h
struct xdp_rxq_info {
	struct net_device *dev;
	u32 queue_index;
	u32 reg_state;
	struct xdp_mem_info mem;
} ____cacheline_aligned; /* perf critical, avoid false-sharing */

struct xdp_buff {
	void *data;
	void *data_end;
	void *data_meta;
	void *data_hard_start;
	unsigned long handle;
	struct xdp_rxq_info *rxq;
};

sk_buff数据结构定义如下:

// /include/linux/skbuff.h
struct sk_buff {
	union {
		struct {
			/* These two members must be first. */
			struct sk_buff		*next;
			struct sk_buff		*prev;

			union {
				struct net_device	*dev;
				/* Some protocols might use this space to store information,
				 * while device pointer would be NULL.
				 * UDP receive path is one user.
				 */
				unsigned long		dev_scratch;
			};
		};
		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
		struct list_head	list;
	};

	union {
		struct sock		*sk;
		int			ip_defrag_offset;
	};

	union {
		ktime_t		tstamp;
		u64		skb_mstamp_ns; /* earliest departure time */
	};
	/*
	 * This is the control buffer. It is free to use for every
	 * layer. Please put your private variables there. If you
	 * want to keep them across layers you have to do a skb_clone()
	 * first. This is owned by whoever has the skb queued ATM.
	 */
	char			cb[48] __aligned(8);

	union {
		struct {
			unsigned long	_skb_refdst;
			void		(*destructor)(struct sk_buff *skb);
		};
		struct list_head	tcp_tsorted_anchor;
	};

#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
	unsigned long		 _nfct;
#endif
	unsigned int		len,
				data_len;
	__u16			mac_len,
				hdr_len;

	/* Following fields are _not_ copied in __copy_skb_header()
	 * Note that queue_mapping is here mostly to fill a hole.
	 */
	__u16			queue_mapping;

/* if you move cloned around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define CLONED_MASK	(1 << 7)
#else
#define CLONED_MASK	1
#endif
#define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)

	__u8			__cloned_offset[0];
	__u8			cloned:1,
				nohdr:1,
				fclone:2,
				peeked:1,
				head_frag:1,
				xmit_more:1,
				pfmemalloc:1;
#ifdef CONFIG_SKB_EXTENSIONS
	__u8			active_extensions;
#endif
	/* fields enclosed in headers_start/headers_end are copied
	 * using a single memcpy() in __copy_skb_header()
	 */
	/* private: */
	__u32			headers_start[0];
	/* public: */

/* if you move pkt_type around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_TYPE_MAX	(7 << 5)
#else
#define PKT_TYPE_MAX	7
#endif
#define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)

	__u8			__pkt_type_offset[0];
	__u8			pkt_type:3;
	__u8			ignore_df:1;
	__u8			nf_trace:1;
	__u8			ip_summed:2;
	__u8			ooo_okay:1;

	__u8			l4_hash:1;
	__u8			sw_hash:1;
	__u8			wifi_acked_valid:1;
	__u8			wifi_acked:1;
	__u8			no_fcs:1;
	/* Indicates the inner headers are valid in the skbuff. */
	__u8			encapsulation:1;
	__u8			encap_hdr_csum:1;
	__u8			csum_valid:1;

#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_VLAN_PRESENT_BIT	7
#else
#define PKT_VLAN_PRESENT_BIT	0
#endif
#define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
	__u8			__pkt_vlan_present_offset[0];
	__u8			vlan_present:1;
	__u8			csum_complete_sw:1;
	__u8			csum_level:2;
	__u8			csum_not_inet:1;
	__u8			dst_pending_confirm:1;
#ifdef CONFIG_IPV6_NDISC_NODETYPE
	__u8			ndisc_nodetype:2;
#endif

	__u8			ipvs_property:1;
	__u8			inner_protocol_type:1;
	__u8			remcsum_offload:1;
#ifdef CONFIG_NET_SWITCHDEV
	__u8			offload_fwd_mark:1;
	__u8			offload_l3_fwd_mark:1;
#endif
#ifdef CONFIG_NET_CLS_ACT
	__u8			tc_skip_classify:1;
	__u8			tc_at_ingress:1;
	__u8			tc_redirected:1;
	__u8			tc_from_ingress:1;
#endif
#ifdef CONFIG_TLS_DEVICE
	__u8			decrypted:1;
#endif

#ifdef CONFIG_NET_SCHED
	__u16			tc_index;	/* traffic control index */
#endif

	union {
		__wsum		csum;
		struct {
			__u16	csum_start;
			__u16	csum_offset;
		};
	};
	__u32			priority;
	int			skb_iif;
	__u32			hash;
	__be16			vlan_proto;
	__u16			vlan_tci;
#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
	union {
		unsigned int	napi_id;
		unsigned int	sender_cpu;
	};
#endif
#ifdef CONFIG_NETWORK_SECMARK
	__u32		secmark;
#endif

	union {
		__u32		mark;
		__u32		reserved_tailroom;
	};

	union {
		__be16		inner_protocol;
		__u8		inner_ipproto;
	};

	__u16			inner_transport_header;
	__u16			inner_network_header;
	__u16			inner_mac_header;

	__be16			protocol;
	__u16			transport_header;
	__u16			network_header;
	__u16			mac_header;

	/* private: */
	__u32			headers_end[0];
	/* public: */

	/* These elements must be at the end, see alloc_skb() for details.  */
	sk_buff_data_t		tail;
	sk_buff_data_t		end;
	unsigned char		*head,
				*data;
	unsigned int		truesize;
	refcount_t		users;

#ifdef CONFIG_SKB_EXTENSIONS
	/* only useable after checking ->active_extensions != 0 */
	struct skb_ext		*extensions;
#endif
};

XDP与eBPF的关系

XDP程序是通过bpf()系统调用控制的,bpf()系统调用使用程序类型BPF_PROG_TYPE_XDP进行加载。

XDP操作模式

XDP支持3种工作模式,默认使用native模式:

  • Native XDP:在native模式下,XDP BPF程序运行在网络驱动的早期接收路径上(RX队列),因此,使用该模式时需要网卡驱动程序支持。
  • Offloaded XDP:在Offloaded模式下,XDP BFP程序直接在NIC(Network Interface Controller)中处理数据包,而不使用主机CPU,相比native模式,性能更高
  • Generic XDP:Generic模式主要提供给开发人员测试使用,对于网卡或驱动无法支持native或offloaded模式的情况,内核提供了通用的generic模式,运行在协议栈中,不需要对驱动做任何修改。生产环境中建议使用native或offloaded模式

XDP操作结果码

  • XDP_DROP:丢弃数据包,发生在驱动程序的最早RX阶段
  • XDP_PASS:将数据包传递到协议栈处理,操作可能为以下两种形式:
    1、正常接收数据包,分配愿数据sk_buff结构并且将接收数据包入栈,然后将数据包引导到另一个CPU进行处理。他允许原始接口到用户空间进行处理。 这可能发生在数据包修改前或修改后。
    2、通过GRO(Generic receive offload)方式接收大的数据包,并且合并相同连接的数据包。经过处理后,GRO最终将数据包传入“正常接收”流
  • XDP_TX:转发数据包,将接收到的数据包发送回数据包到达的同一网卡。这可能在数据包修改前或修改后发生
  • XDP_REDIRECT:数据包重定向,XDP_TX,XDP_REDIRECT是将数据包送到另一块网卡或传入到BPF的cpumap中
  • XDP_ABORTED:表示eBPF程序发生错误,并导致数据包被丢弃。自己开发的程序不应该使用该返回码
    一文读懂eBPF/XDP

XDP和iproute2加载器

iproute2工具中提供的ip命令可以充当XDP加载器的角色,将XDP程序编译成ELF文件并加载他。

  • 编写XDP程序xdp_filter.c,程序功能为丢弃所有TCP连接包,程序将xdp_md结构指针作为输入,相当于驱动程序xdp_buff的BPF结构。程序的入口函数为filter,编译后ELF文件的区域名为mysection。
#include <linux/bpf.h>
#include <linux/if_ether.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/tcp.h>

#define SEC(NAME) __attribute__((section(NAME), used))

SEC("mysection")
int filter(struct xdp_md *ctx) {
    int ipsize = 0;
    void *data = (void *)(long)ctx->data;
    void *data_end = (void *)(long)ctx->data_end;
    struct ethhdr *eth = data;
    struct iphdr *ip;

    ipsize = sizeof(*eth);
    ip = data + ipsize;

    ipsize += sizeof(struct iphdr);
    if (data + ipsize > data_end) {
        return XDP_DROP;
    }

    if (ip->protocol == IPPROTO_TCP) {
        return XDP_DROP;
    }

    return XDP_PASS;
}

  • 将XDP程序编译为ELF文件
clang -O2 -target bpf -c xdp_filter.c -o xdp_filter.o
  • 使用ip命令加载XDP程序,将mysection部分作为程序的入口点
sudo ip link set dev ens33 xdp obj xdp_filter.o sec mysection

没有报错即完成加载,可以通过以下命令查看结果:

$ sudo ip a show ens33
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 xdpgeneric/id:56 qdisc fq_codel state UP group default qlen 1000
    link/ether 00:0c:29:2f:a8:41 brd ff:ff:ff:ff:ff:ff
    inet 192.168.136.140/24 brd 192.168.136.255 scope global dynamic noprefixroute ens33
       valid_lft 1629sec preferred_lft 1629sec
    inet6 fe80::d411:ff0d:f428:ce2a/64 scope link noprefixroute 
       valid_lft forever preferred_lft forever

其中,xdpgeneric/id:56说明使用的驱动程序为xdpgeneric,XDP程序id为56

  • 验证连接阻断效果
  1. 使用nc -l 8888监听8888 TCP端口,使用nc xxxxx 8888连接发送数据,目标主机未收到任何数据,说明TCP连接阻断成功
  2. 使用nc -kul 9999监听UDP 9999端口,使用nc -u xxxxx 9999连接发送数据,目标主机正常收到数据,说明UDP连接不受影响
  • 卸载XDP程序
$ sudo ip link set dev ens33 xdp off

卸载后,连接8888端口,发送数据,通信正常。

XDP和BCC

编写C代码xdp_bcc.c,当TCP连接目的端口为9999时DROP:

#define KBUILD_MODNAME "program"
#include <linux/bpf.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/tcp.h>

int filter(struct xdp_md *ctx) {
    int ipsize = 0;
    void *data = (void *)(long)ctx->data;
    void *data_end = (void *)(long)ctx->data_end;
    struct ethhdr *eth = data;
    struct iphdr *ip;

    ipsize = sizeof(*eth);
    ip = data + ipsize;

    ipsize += sizeof(struct iphdr);
    if (data + ipsize > data_end) {
        return XDP_DROP;
    }

    if (ip->protocol == IPPROTO_TCP) {
        struct tcphdr *tcp = (void *)ip + sizeof(*ip);
        ipsize += sizeof(struct tcphdr);
        if (data + ipsize > data_end) {
            return XDP_DROP;
        }

        if (tcp->dest == ntohs(9999)) {
            bpf_trace_printk("drop tcp dest port 9999\n");
            return XDP_DROP;
        }
    }

    return XDP_PASS;
}

与使用ip命令加载XDP程序类似,这里编写python加载程序实现对XDP程序的编译和内核注入。

#!/usr/bin/python

from bcc import BPF
import time

device = "ens33"
b = BPF(src_file="xdp_bcc.c")
fn = b.load_func("filter", BPF.XDP)
b.attach_xdp(device, fn, 0)

try:
  b.trace_print()
except KeyboardInterrupt:
  pass

b.remove_xdp(device, 0)

验证效果,使用nc测试,无法与目标主机9999端口实现通信

$ sudo python xdp_bcc.py 

<idle>-0       [003] ..s. 22870.984559: 0: drop tcp dest port 9999
<idle>-0       [003] ..s. 22871.987644: 0: drop tcp dest port 9999
<idle>-0       [003] ..s. 22872.988840: 0: drop tcp dest port 9999
<idle>-0       [003] ..s. 22873.997261: 0: drop tcp dest port 9999
<idle>-0       [003] ..s. 22875.000567: 0: drop tcp dest port 9999
<idle>-0       [003] ..s. 22876.002998: 0: drop tcp dest port 9999
<idle>-0       [003] ..s. 22878.005414: 0: drop tcp dest port 9999
<idle>-0       [003] ..s. 22882.018119: 0: drop tcp dest port 9999

参考

https://duo.com/labs/tech-notes/writing-an-xdp-network-filter-with-ebpf
https://davidlovezoe.club/wordpress/archives/937

上一篇:BPF过滤


下一篇:【踩坑】使用libbpfgo构建你的第一个eBPF项目