个人感觉还不是很完善,很多都是针对python去做得案例,但是值得期待
1、pom.xml
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <parent> <artifactId>FlinkSql</artifactId> <groupId>org.example</groupId> <version>1.0-SNAPSHOT</version> </parent> <modelVersion>4.0.0</modelVersion> <artifactId>FlinkML</artifactId> <properties> <flink12.version>1.12.1</flink12.version> <scala.binary.version>2.11</scala.binary.version> <!-- flink-cdc版本为1.3.0,支持binlog文件和pos启动--> <flink-cdc.version>1.2.0</flink-cdc.version> <hive.version>1.1.0</hive.version> <alink.version>1.4.0</alink.version> </properties> <dependencies> <dependency> <groupId>com.alibaba.alink</groupId> <artifactId>alink_core_flink-1.12_2.11</artifactId> <version>${alink.version}</version> </dependency> <!-- Flink Dependency --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-hive_2.11</artifactId> <version>${flink12.version}</version> <!--<scope>provided</scope>--> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-api-java-bridge_2.11</artifactId> <version>${flink12.version}</version> <!--<scope>provided</scope>--> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-planner_2.11</artifactId> <version>${flink12.version}</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-planner-blink --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-planner-blink_2.11</artifactId> <version>${flink12.version}</version> <!--<scope>provided</scope>--> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common --> <!--<dependency>--> <!--<groupId>org.apache.hadoop</groupId>--> <!--<artifactId>hadoop-common</artifactId>--> <!--<version>2.6.0</version>--> <!--</dependency>--> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-hadoop-compatibility --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-hadoop-compatibility_2.11</artifactId> <version>${flink12.version}</version> </dependency> <!-- Hive Dependency --> <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-exec</artifactId> <version>1.1.0</version> <!--<scope>provided</scope>--> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-metastore --> <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-metastore</artifactId> <version>1.1.0</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.thrift/libfb303 --> <dependency> <groupId>org.apache.thrift</groupId> <artifactId>libfb303</artifactId> <version>0.9.2</version> <!--<type>pom</type>--> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-shaded-hadoop-2-uber --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-shaded-hadoop-2-uber</artifactId> <version>2.6.5-7.0</version> <!--<scope>provided</scope>--> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-jdbc_2.11</artifactId> <version>${flink12.version}</version> </dependency> <!--format--> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-json</artifactId> <version>${flink12.version}</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-java_2.11</artifactId> <version>${flink12.version}</version> <!--<scope>provided</scope>--> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-clients_2.11</artifactId> <version>${flink12.version}</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-core --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-core</artifactId> <version>${flink12.version}</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.44</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>RELEASE</version> <scope>compile</scope> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka_2.11</artifactId> <version>${flink12.version}</version> </dependency> <!-- https://mvnrepository.com/artifact/redis.clients/jedis --> <dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>3.2.0</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.bahir/flink-connector-redis --> <dependency> <groupId>org.apache.bahir</groupId> <artifactId>flink-connector-redis_2.11</artifactId> <version>1.0</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-elasticsearch-base --> <!-- <dependency>--> <!-- <groupId>org.apache.flink</groupId>--> <!-- <artifactId>flink-connector-elasticsearch-base_2.11</artifactId>--> <!-- <version>${flink12.version}</version>--> <!-- </dependency>--> <dependency> <groupId>com.alibaba.ververica</groupId> <!-- add the dependency matching your database --> <artifactId>flink-connector-mysql-cdc</artifactId> <version>1.2.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-orc-nohive_2.11</artifactId> <version>${flink12.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-statebackend-rocksdb_2.11</artifactId> <version>${flink12.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-hbase-1.4_2.11</artifactId> <version>${flink12.version}</version> </dependency> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>19.0</version> </dependency> <dependency> <groupId>ru.yandex.clickhouse</groupId> <artifactId>clickhouse-jdbc</artifactId> <version>0.2.4</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_2.11</artifactId> <version>${flink12.version}</version> </dependency> <!--打印详细信息--> <!-- <dependency>--> <!-- <groupId>org.slf4j</groupId>--> <!-- <artifactId>slf4j-simple</artifactId>--> <!-- <version>1.7.25</version>--> <!-- <!– <scope>test</scope>–>--> <!-- </dependency>--> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-csv</artifactId> <version>${flink12.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-elasticsearch6_2.11</artifactId> <version>${flink12.version}</version> </dependency> <dependency> <groupId>com.alibaba.ververica</groupId> <artifactId>flink-format-changelog-json</artifactId> <version>1.1.0</version> </dependency> <!-- 日志相关依赖,flink必须要加,否则报错,加了hive,冲突了 --> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api</artifactId> <version>1.7.25</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> <version>1.7.25</version> </dependency> </dependencies> <build> <plugins> <!-- 编译插件 --> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.6.0</version> <configuration> <source>1.8</source> <target>1.8</target> <encoding>UTF-8</encoding> </configuration> </plugin> <!-- scala编译插件 --> <plugin> <groupId>net.alchim31.maven</groupId> <artifactId>scala-maven-plugin</artifactId> <version>3.1.6</version> <configuration> <scalaCompatVersion>2.11</scalaCompatVersion> <scalaVersion>2.11.12</scalaVersion> <encoding>UTF-8</encoding> <addScalacArgs>-target:jvm-1.8</addScalacArgs> </configuration> <executions> <execution> <id>compile-scala</id> <phase>compile</phase> <goals> <goal>add-source</goal> <goal>compile</goal> </goals> </execution> <execution> <id>test-compile-scala</id> <phase>test-compile</phase> <goals> <goal>add-source</goal> <goal>testCompile</goal> </goals> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-assembly-plugin</artifactId> <version>2.6</version> <configuration> <descriptorRefs> <descriptorRef>jar-with-dependencies</descriptorRef> </descriptorRefs> <archive> <manifest> <!-- 可以设置jar包的入口类(可选) --> <mainClass>MySqlBinlogSourceExample</mainClass> </manifest> </archive> </configuration> <executions> <execution> <id>make-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> </execution> </executions> </plugin> </plugins> </build> </project>
2、代码
package RegressionPredict; import org.apache.flink.api.common.typeinfo.BasicTypeInfo; import org.apache.flink.api.common.typeinfo.TypeInformation; import org.apache.flink.api.common.typeinfo.Types; import org.apache.flink.table.api.DataTypes; import org.apache.flink.table.api.TableSchema; import org.apache.flink.table.descriptors.Schema; import org.apache.flink.table.types.DataType; import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.regression.GbdtRegPredictBatchOp; import com.alibaba.alink.operator.batch.regression.GbdtRegTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.regression.GbdtRegPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; /** * @program: FlinkSql * @description: * @author: yang * @create: 2021-06-23 16:24 */ public class GbdtRegPredictBatchOpTest { public static void main(String[] args) throws Exception { List<Row> df = Arrays.asList( Row.of(1.0, "A", 0, 0, 0), Row.of(2.0, "B", 1, 1, 0), Row.of(3.0, "C", 2, 2, 1), Row.of(4.0, "D", 3, 3, 1) ); //方式一:如果不指定数据类型,则程序根据值去猜数据类型, // BatchOperator <?> batchSource = new MemSourceBatchOp(df, new String[] {"f0", "f1", "f2", "f3", "label"}); // StreamOperator <?> streamSource = new MemSourceStreamOp(df, new String[] {"f0", "f1", "f2", "f3", "label"}); //方式二 BatchOperator <?> batchSource = new MemSourceBatchOp(df, new TableSchema("f0,f1,f2,f3,label".split(","), new TypeInformation[] {Types.DOUBLE, Types.STRING,Types.INT,Types.INT,Types.INT})); StreamOperator <?> streamSource = new MemSourceStreamOp(df,new TableSchema("f0,f1,f2,f3,label".split(","), new TypeInformation[] {Types.DOUBLE, Types.STRING,Types.INT,Types.INT,Types.INT})); BatchOperator <?> trainOp = new GbdtRegTrainBatchOp() .setLearningRate(1.0) .setNumTrees(3) .setMinSamplesPerLeaf(1) .setLabelCol("label") .setFeatureCols("f0", "f1", "f2", "f3") .linkFrom(batchSource); BatchOperator <?> predictBatchOp = new GbdtRegPredictBatchOp() .setPredictionCol("pred"); StreamOperator <?> predictStreamOp = new GbdtRegPredictStreamOp(trainOp) .setPredictionCol("pred"); System.out.println(">>>>>>>>>批量>>>>>>>>>>"); predictBatchOp.linkFrom(trainOp, batchSource).print(); System.out.println(">>>>>>>>>流式>>>>>>>>>>"); predictStreamOp.linkFrom(streamSource).print(); StreamOperator.execute(); } }