MapReduce的多输入、多mapper
虽然一个MapReduce作业的输入可能包含多个输入文件(由文件glob、过滤器和路径组成),但所有文件都由同一个InputFormat和同一个Mapper来解释。然而,数据格式往往会随时间而演变,所以必须写自己的mapper来处理应用中的遗留数据格式问题。或者,有些数据源会提供相同的数据,但是格式不同。
这些问题可以用MultipleInputs类来妥善处理,它允许为每条输入路径指定InputFormat和Mapper。
代码如下
package com.zhen.mapreduce.multipleInput; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.MultipleInputs; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; /** * @author FengZhen * @date 2018年8月25日 * 多输入、多mapper */ public class MultipleInputsTest extends Configured implements Tool{ /** * 根据 ` 分隔字符串 * @author FengZhen * */ static class SplitMapper1 extends Mapper<LongWritable, Text, Text, IntWritable>{ @Override protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException { String[] values = value.toString().split("`"); for (String string : values) { context.write(new Text(string), new IntWritable(1)); } } } /** * 根据 , 分隔字符串 * @author FengZhen * */ static class SplitMapper2 extends Mapper<LongWritable, Text, Text, IntWritable>{ @Override protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException { String[] values = value.toString().split(","); for (String string : values) { context.write(new Text(string), new IntWritable(1)); } } } /** * 同一个reduce * @author FengZhen * */ static class SplitReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ @Override protected void reduce(Text key, Iterable<IntWritable> value, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable intWritable : value) { sum += intWritable.get(); } context.write(key, new IntWritable(sum)); } } public int run(String[] args) throws Exception { Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration); job.setJobName("MultipleInputs"); job.setJarByClass(MultipleInputsTest.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); job.setReducerClass(SplitReducer.class); //设置多输入、多mapper MultipleInputs.addInputPath(job, new Path(args[0]), TextInputFormat.class, SplitMapper1.class); MultipleInputs.addInputPath(job, new Path(args[1]), TextInputFormat.class, SplitMapper2.class); job.setOutputFormatClass(TextOutputFormat.class); TextOutputFormat.setOutputPath(job, new Path(args[2])); return job.waitForCompletion(true) ? 0 : 1; } public static void main(String[] args) { try { String[] params = {"hdfs://fz/user/hdfs/MapReduce/data/multipleInputs/test1","hdfs://fz/user/hdfs/MapReduce/data/multipleInputs/test1", "hdfs://fz/user/hdfs/MapReduce/data/multipleInputs/output"}; int exitCode = ToolRunner.run(new MultipleInputsTest(), params); System.exit(exitCode); } catch (Exception e) { e.printStackTrace(); } } }