多线程开发可以更好的发挥多核cpu性能,常用的多线程设计模式有:Future、Master-Worker、Guard Susperionsion、不变、生产者-消费者 模式;
jdk除了定义了若干并发的数据结构,也内置了多线程框架和各种线程池; 锁(分为内部锁、重入锁、读写锁)、ThreadLocal、
信号量等在并发控制中发挥着巨大的作用。这里重点介绍第一种并发——Future模型。
一、什么是Future模型:
该模型是将异步请求和代理模式联合的模型产物。类似商品订单模型。见下图:
客户端发送一个长时间的请求,服务端不需等待该数据处理完成便立即返回一个伪造的代理数据(相当于商品订单,不是商品本身),用户也无需等待,先去执行其他的若干操作后,再去调用服务器已经完成组装的真实数据。该模型充分利用了等待的时间片段。
二、Future模式的核心结构:
(1)Main函数:
public class Main { public static void main(String[] args){
Client client = new Client();
//理解返回一个FutureData
Data data = client.request("name");
System.out.println("请求完毕!"); try{ //处理其他业务
//这个过程中,真是数据RealData组装完成,重复利用等待时间
Thread.sleep(2000); }catch (Exception e){ } //真实数据
System.out.println("数据 = "+ data.getResult()); } }
Client的实现:
public class Client { public Data request(final String queryStr){
final FutureData future = new FutureData();
//开启一个新的线程来构造真实数据
new Thread(){
public void run(){
RealData realData = new RealData(queryStr);
future.setRealData(realData); }
}.start();
return future;
}
}
Data的实现:
public interface Data { public String getResult();
}
FutureData:
/**
* 是对RealData的一个包装
* @author limin
*
*/
public class FutureData implements Data { protected RealData realData =null;
protected boolean isReady = false;
public synchronized void setRealData(RealData realData){
if(isReady){
return;
}
this.realData=realData;
isReady=true;
notifyAll(); } @Override
public synchronized String getResult() {
while(!isReady){
try{
wait();
}catch (Exception e){ }
}
return realData.result;
} }
RealData实现:
public class RealData implements Data {
protected String result; public RealData(String para){
//构造比较慢
StringBuffer sb= new StringBuffer();
for(int i=0;i<10;i++){
sb.append(para);
try{
Thread.sleep(1000);
}catch(Exception e){ }
result= sb.toString();
}
} @Override
public String getResult() { return result;
} }
注意:
FutureData是对RealData的包装,是dui真实数据的一个代理,封装了获取真实数据的等待过程。它们都实现了共同的接口,所以,针对客户端程序组是没有区别的;
客户端在调用的方法中,单独启用一个线程来完成真实数据的组织,这对调用客户端的main函数式封闭的;
因为咋FutureData中的notifyAll和wait函数,主程序会等待组装完成后再会继续主进程,也就是如果没有组装完成,main函数会一直等待。