我一直在网上研究不同的来源,并尝试了各种方法,但只能找到如何计算独特单词的频率而不是唯一的短语.我到目前为止的代码如下:
import collections
import re
wanted = set(['inflation', 'gold', 'bank'])
cnt = collections.Counter()
words = re.findall('\w+', open('02.2003.BenBernanke.txt').read().lower())
for word in words:
if word in wanted:
cnt [word] += 1
print (cnt)
如果可能的话,我还想计算本文中使用短语“*银行”和“高通胀”的次数.我感谢您给出的任何建议或指导.
解决方法:
首先,这是我如何生成你做的cnt(减少内存开销)
def findWords(filepath):
with open(filepath) as infile:
for line in infile:
words = re.findall('\w+', line.lower())
yield from words
cnt = collections.Counter(findWords('02.2003.BenBernanke.txt'))
现在,关于短语的问题:
from itertools import tee
phrases = {'central bank', 'high inflation'}
fw1, fw2 = tee(findWords('02.2003.BenBernanke.txt'))
next(fw2)
for w1,w2 in zip(fw1, fw2)):
phrase = ' '.join([w1, w2])
if phrase in phrases:
cnt[phrase] += 1
希望这可以帮助