一、Hadoop数据序列化的数据类型
Java数据类型 => Hadoop数据类型
int IntWritable
float FloatWritable
long LongWritable
double DoubleWritable
String Text
boolean BooleanWritable
byte ByteWritable
map MapWritable
array ArrayWritable
二、Hadoop的序列化
1.什么是序列化?
在java中,序列化接口是Serializable,它下面又实现了很多的序列化接口,所以java的序列化是一个重量级的序列化框架,一个对象被java序列化之后会附带很多额外的信息(校验信息、header、继承体系等),不便于在网络中进行高效的传输,所以Hadoop开发了一套自己的序列化框架——Writable。
序列化就是把内存当中的对象,转化为字节序列以便于存储和网络传输;
反序列化是将收到的字节序列或硬盘当中的持续化数据,转换成内存中的对象。
2.序列化的理解方法(自己悟的,不对勿喷~~)
比如下面流量统计案例中,流量的封装类FlowBean实现了Writable接口,其中定义了变量upFlow、dwFlow、flowSum;
在Mapper和Reducer类中初始化封装类FlowBean时,内存会分配空间加载这些对象,而这些对象不便于在网络中高效的传输,这是封装类FlowBean中的序列化方法将这些对象转换为字节序列,方便了存储和传输;
当Mapper或Reducer需要将这些对象的字节序列写出到磁盘时,封装类FlowBean中的反序列化方法将字节序列转换为对象,然后写道磁盘中。
3.序列化特点
序列化与反序列化时分布式数据处理当中经常会出现的,比如hadoop通信是通过远程调用(rpc)实现的,这个过程就需要序列化。
特点:1)紧凑;
2)快速
3)可扩展
4)可互操作
三、Mapreduce的流量统计程序案例
1.代码
/**
* @author: PrincessHug
* @date: 2019/3/23, 23:38
* @Blog: https://www.cnblogs.com/HelloBigTable/
*/
public class FlowBean implements Writable {
private long upFlow;
private long dwFlow;
private long flowSum; public long getUpFlow() {
return upFlow;
} public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
} public long getDwFlow() {
return dwFlow;
} public void setDwFlow(long dwFlow) {
this.dwFlow = dwFlow;
} public long getFlowSum() {
return flowSum;
} public void setFlowSum(long flowSum) {
this.flowSum = flowSum;
} public FlowBean() {
} public FlowBean(long upFlow, long dwFlow) {
this.upFlow = upFlow;
this.dwFlow = dwFlow;
this.flowSum = upFlow + dwFlow;
} /**
* 序列化
* @param out 输出流
* @throws IOException
*/
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(dwFlow);
out.writeLong(flowSum);
} /**
* 反序列化
* @param in
* @throws IOException
*/
@Override
public void readFields(DataInput in) throws IOException {
upFlow = in.readLong();
dwFlow = in.readLong();
flowSum = in.readLong();
} @Override
public String toString() {
return upFlow + "\t" + dwFlow + "\t" + flowSum;
}
} public class FlowCountMapper extends Mapper<LongWritable, Text,Text,FlowBean> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//获取数据
String line = value.toString(); //切分数据
String[] fields = line.split("\t"); //封装数据
String phoneNum = fields[1];
long upFlow = Long.parseLong(fields[fields.length - 3]);
long dwFlow = Long.parseLong(fields[fields.length - 2]); //发送数据
context.write(new Text(phoneNum),new FlowBean(upFlow,dwFlow));
}
} public class FlowCountReducer extends Reducer<Text,FlowBean,Text,FlowBean> {
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
//聚合数据
long upFlow_sum = 0;
long dwFlow_sum = 0;
for (FlowBean f:values){
upFlow_sum += f.getUpFlow();
dwFlow_sum += f.getDwFlow();
}
//发送数据
context.write(key,new FlowBean(upFlow_sum,dwFlow_sum));
}
} public class FlowPartitioner extends Partitioner<Text,FlowBean> {
@Override
public int getPartition(Text key, FlowBean value, int i) {
//获取用来分区的电话号码前三位
String phoneNum = key.toString().substring(0, 3);
//设置分区逻辑
int partitionNum = 4;
if ("135".equals(phoneNum)){
return 0;
}else if ("137".equals(phoneNum)){
return 1;
}else if ("138".equals(phoneNum)){
return 2;
}else if ("139".equals(phoneNum)){
return 3;
}
return partitionNum;
}
}
public class FlowCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//获取配置,定义工具
Configuration conf = new Configuration();
Job job = Job.getInstance(); //设置运行类
job.setJarByClass(FlowCountDriver.class); //设置Mapper类及Mapper输出数据类型
job.setMapperClass(FlowCountMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class); //设置Reducer类及其输出数据类型
job.setReducerClass(FlowCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class); //设置自定义分区
job.setPartitionerClass(FlowPartitioner.class);
job.setNumReduceTasks(5); //设置文件输入输出流
FileInputFormat.setInputPaths(job,new Path("G:\\mapreduce\\flow\\in"));
FileOutputFormat.setOutputPath(job,new Path("G:\\mapreduce\\flow\\inpartitionout")); //返回运行完成
if (job.waitForCompletion(true)){
System.out.println("运行完毕!");
}else {
System.out.println("运行出错!");
}
}
}