\(\mathcal{Description}\)
Link.
破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面。
对于整数集 \(X\),定义其 好子集 为满足 \(Y\subseteq X\land\left(\sum_{y\in Y}y\right)\mid\left(\sum_{x\in X}x\right)\) 的任意 \(Y\)。求 \(S_n=[1,n]\cap\mathbb N\) 的所有 \(m\) 阶子集中,包含 \(k\) 阶 好子集 数量最多的子集数。答案模 \((10^9+7)\)。
\(k\le m\le n\le10^{12}\),\(m\le4\)。
\(\mathcal{Solution}\)
\[\mathfrak{\text{Defining }\LaTeX\text{ macros...}}\newcommand{\vct}[1]{\boldsymbol{#1}}\newcommand{\stir}[2]{\genfrac{\{}{\}}{0pt}{}{#1}{#2}}\newcommand{\opn}[1]{\operatorname{#1}}\newcommand{\lcm}[0]{\opn{lcm}}\newcommand{\sg}[0]{\opn{sg}}\newcommand{\dist}[0]{\opn{dist}}\newcommand{\lca}[0]{\opn{lca}}\newcommand{\floor}[2]{\left\lfloor\frac{#1}{#2}\right\rfloor}\newcommand{\ceil}[2]{\left\lceil\frac{#1}{#2}\right\rceil} \]令 \(f_{m,k}(n)\) 表示一组 \((m,k,n)\) 的答案,讨论之。
-
\(m=k=1.\)
显然 \(f_{m,k}(n)=n\)。
-
\(m=2,k=1.\)
设子集为 \(\{a,b\}\),\(a<b\),则应有 \(a\mid b\)。所以 \(f_{m,k}(n)=\sum_{i=1}^n\left(\floor{n}{i}-1\right)\)。
-
\(m=k=2.\)
显然 \(f_{m,k}(n)=\binom{n}{2}\)。
-
\(m=3,k=1.\)
必然有 \(\{k,2k,3k\}\) 为最优集合,即 \(f_{m,k}(n)=\floor{n}{3}\)。
证明
- 考虑集合 $\{x,y,z\}$,$x<y<z$。该集合包含 *好子集*="" 的上界是="" $3$="" 个,即="" $$="" \begin{cases}="" x\mid(y+z)\\="" y\mid(x+z)\\="" z\mid(x+y)="" \end{cases}="" 而="" $x<y<z\rightarrow="" x+y<2z$,结合="" $z\mid(x+y)$="" 知="" $z="x+y$。代入,类似地有" $y\mid="" 2x\land="" 2x<2y$,知="" $y="2x$,那么" $x:y:z="1:2:3$。" $\square$="" <="" details=""> -
\(m=3,k=2.\)
设子集 \(\{a,b,c\}\),\(a<b<c\),则应有 \((a+b)\mid c\)。枚举 \(a+b=i\),得到
\[f_{m,k}(n)=\sum_{i=1}^n\floor{i-1}{2}\floor{n}{i}. \] -
\(m=k=3.\)
显然 \(f_{m,k}(n)=\binom{n}{3}\)。
-
\(m=4,k=1.\)
这个结论不太好正向推出啊。总之,当 \(n\ge6\),最优集合 \(\{a,b,c,d\}\) 的形式必为以下一种:
\[\{k,2k,3k,4k\},\\\{k,2k,6k,9k\},\\\{k,3k,8k,12k\},\\\{k,4k,5k,10k\},\\\{k,6k,14k,21k\},\\\{2k,3k,10k,15k\}. \]加之边界讨论,最终有
\[f_{m,k}=\begin{cases}1,&n\le5\\\floor{n}{6}+\floor{n}{9}+\floor{n}{10}+\floor{n}{12}+\floor{n}{15}+\floor{n}{21},&n>5\end{cases}. \]证明
对于最优的 $\{a,b,c,d\}$,$a<b<c<d$,应有 $$="" \begin{cases}a\mid(a+b+c+d)\\b\mid(a+b+c+d)\\c\mid(a+b+c+d)\\d\mid(a+b+c+d)\end{cases},="" 设出系数="" $x,y,z,w$:="" \begin{cases}xa="a+b+c+d\\yb=a+b+c+d\\zc=a+b+c+d\\wd=a+b+c+d\end{cases},~x,y,z,w\in\mathbb" n^*.="" 那么="" \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{w}="1." 接下来通过放缩确定系数范围。若="" $x="">2$: $$ \begin{aligned}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{w}&\le\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\\&=0.95\\&\le1.\end{aligned} $$ 又显然 $x>1$,故 $x=2$。类似可证 $y\in\{3,4,5\}$。分别讨论即可解出 $z,w$。 $\square$ -
\(m=4,k=2.\)
\(n<11\) 可以打表,\(n\ge11\) 我们喜闻乐见地得到神奇结论:
\[f_{m,k}(n)=\floor{n}{11}+\floor{n}{29},~~~~n\ge11. \]证明
构造最优的 $\{a,b,c,d\}$,应有 $$ \begin{cases} (a+b)\mid(a+b+c+d)\Rightarrow (a+b)\mid(c+d),\\ (a+c)\mid(a+b+c+d)\Rightarrow (a+c)\mid(b+d),\\ \left.\begin{array}{} (a+d)\mid(a+b+c+d)\\ (b+c)\mid(a+b+c+d) \end{array}\right\}\Rightarrow a+b=c+d. \end{cases} $$ 设 $k(a+c)=b+d=a+2b-c<3(a+c)$,知 $k=2$。类似讨论可证。 $\square$ -
\(m=4,k=3.\)
这个总算能阳间推导了 qwq。
对于 \(\{a,b,c,d\}\),必然 \((a+b+c)\mid d\)。枚举 \(a+b+c=i\),记 \(f(i)\) 表示把 \(i\) 拆成 \(a,b,c\) 的方案数,不难发现
\[f(i)=\binom{i-1}{2}-3\left(\ceil{n}{2}-1\right)+2[3\mid n]. \]答案则为
\[f_{m,k}(n)=\sum_{i=1}^nf(n)\floor{n}{i}. \]整除分块即可。
-
\(m=k=4.\)
显然 \(f_{m,k}(n)=\binom{n}{4}\)。
放三道傻瓜题的原因是让选手享受这题一个情况 \(10\) 分的快乐吗?(
\(\mathcal{Code}\)
/*~Rainybunny~*/
// Have you MODULED correctly?
#ifndef RYBY
#pragma GCC optimize( "Ofast" )
#endif
#include <bits/stdc++.h>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
typedef long long LL;
const int MOD = 1e9 + 7, INV2 = 500000004, INV3 = 333333336, INV4 = 250000002;
LL n;
int m, k;
inline LL sqrs( const LL x ) {
return x % MOD * ( ( x + 1 ) % MOD ) % MOD * ( ( 2 * x + 1 ) % MOD ) % MOD
* INV2 % MOD * INV3 % MOD;
}
inline void solve11() {
printf( "%lld\n", n % MOD );
}
inline void solve21() {
LL ans = 0;
for ( LL l = 1, r; l <= n; l = r + 1 ) {
r = n / ( n / l );
ans = ( ans + ( r - l + 1 ) % MOD
* ( ( n / l - 1 ) % MOD ) % MOD ) % MOD;
}
printf( "%lld\n", ans );
}
inline void solve22() {
printf( "%lld\n", n % MOD * ( ( n - 1 ) % MOD ) % MOD * INV2 % MOD );
}
inline void solve31() {
printf( "%lld\n", n / 3 % MOD );
}
inline void solve32() {
LL ans = 0;
for ( LL l = 1, r; l <= n; l = r + 1 ) {
r = n / ( n / l );
if ( l + ( l & 1 ) <= r - ( r & 1 ) ) { // even.
LL s = l + ( l & 1 ) - 1 >> 1, t = r - ( r & 1 ) - 1 >> 1;
LL c = ( r - ( r & 1 ) - ( l + ( l & 1 ) ) >> 1 ) + 1;
ans = ( ans + n / l % MOD * ( ( s + t ) % MOD ) % MOD
* ( c % MOD ) % MOD * INV2 % MOD ) % MOD;
}
if ( l + !( l & 1 ) <= r - !( r & 1 ) ) { // odd.
LL s = l + !( l & 1 ) - 1 >> 1, t = r - !( r & 1 ) - 1 >> 1;
LL c = ( r - !( r & 1 ) - ( l + !( l & 1 ) ) >> 1 ) + 1;
ans = ( ans + n / l % MOD * ( ( s + t ) % MOD ) % MOD
* ( c % MOD ) % MOD * INV2 % MOD ) % MOD;
}
}
printf( "%lld\n", ans );
}
inline void solve33() {
printf( "%lld\n", n % MOD * ( ( n - 1 ) % MOD ) % MOD
* ( ( n - 2 ) % MOD ) % MOD * INV2 % MOD * INV3 % MOD );
}
inline void solve41() {
if ( n <= 5 ) return void( puts( "1" ) );
printf( "%lld\n", ( n / 6 + n / 9 + n / 10
+ n / 12 + n / 15 + n / 21 ) % MOD );
}
inline void solve42() {
static const int SMA[] = { 1, 1, 1, 3, 6, 9, 10 };
if ( n <= 10 ) return void( printf( "%d\n", SMA[n - 4] ) );
printf( "%lld\n", ( ( n / 11 ) + ( n / 29 ) ) % MOD );
}
inline void solve43() {
if ( n == 4 ) return void( puts( "1" ) );
if ( n == 5 ) return void( printf( "%lld\n", n % MOD ) );
LL ans = 0; // (-MOD,MOD) !!!
for ( LL l = 6, r; l <= n; l = r + 1 ) {
r = n / ( n / l );
LL a = ( sqrs( r - 1 ) - sqrs( l - 2 ) ) % MOD;
LL b = ( l + r - 2 ) % MOD
* ( ( r - l + 1 ) % MOD ) % MOD * INV2 % MOD;
LL c = 0;
if ( l + ( l & 1 ) <= r - ( r & 1 ) ) { // even.
LL s = l + ( l & 1 ) >> 1, t = r - ( r & 1 ) >> 1;
LL k = ( r - ( r & 1 ) - ( l + ( l & 1 ) ) >> 1 ) + 1;
c = ( c + ( s + t ) % MOD * ( k % MOD ) % MOD * INV2 % MOD ) % MOD;
}
if ( l + !( l & 1 ) <= r - !( r & 1 ) ) { // odd.
LL s = l + !( l & 1 ) + 1 >> 1, t = r - !( r & 1 ) + 1 >> 1;
LL k = ( r - !( r & 1 ) - ( l + !( l & 1 ) ) >> 1 ) + 1;
c = ( c + ( s + t ) % MOD * ( k % MOD ) % MOD * INV2 % MOD ) % MOD;
}
ans = ( ans + ( n / l ) % MOD * ( ( a - b ) % MOD * INV2 % MOD
- ( 3 * c ) % MOD + 3 * ( r - l + 1 ) % MOD
+ 2 * ( r / 3 - ( l - 1 ) / 3 ) % MOD ) % MOD
* INV2 % MOD * INV3 % MOD ) % MOD;
}
printf( "%lld\n", ( ans % MOD + MOD ) % MOD );
}
inline void solve44() {
printf( "%lld\n", n % MOD * ( ( n - 1 ) % MOD ) % MOD
* ( ( n - 2 ) % MOD ) % MOD * ( ( n - 3 ) % MOD ) % MOD
* INV2 % MOD * INV3 % MOD * INV4 % MOD );
}
int main() {
freopen( "vegetable.in", "r", stdin );
freopen( "vegetable.out", "w", stdout );
scanf( "%lld %d %d", &n, &m, &k );
if ( m == 1 ) return solve11(), 0;
if ( m == 2 ) {
if ( k == 1 ) return solve21(), 0;
if ( k == 2 ) return solve22(), 0;
}
if ( m == 3 ) {
if ( k == 1 ) return solve31(), 0;
if ( k == 2 ) return solve32(), 0;
if ( k == 3 ) return solve33(), 0;
}
if ( m == 4 ) {
if ( k == 1 ) return solve41(), 0;
if ( k == 2 ) return solve42(), 0;
if ( k == 3 ) return solve43(), 0;
if ( k == 4 ) return solve44(), 0;
}
return 0;
}