1143. 最长公共子序列
题目链接
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-common-subsequence/
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题目描述
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
- 例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:
输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace" ,它的长度为 3 。
示例 2:
输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。
示例 3:
输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。
提示:
- 1 <= text1.length, text2.length <= 1000
- text1 和 text2 仅由小写英文字符组成。
题目分析
- 根据题目描述返回text1和text2中的公共子序列
- 使用动态规划,状态转移方程为
代码
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int m = text1.length();
int n = text2.length();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (text1[i - 1] == text2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i - 1][j] > dp[i][j - 1] ? dp[i - 1][j] : dp[i][j - 1];
}
}
return dp[m][n];
}
};