http://www.spoj.com/problems/SEGSQRSS/
SPOJ Problem Set (classical)11840. Sum of Squares with Segment TreeProblem code: SEGSQRSS |
Segment trees are extremely useful. In particular "Lazy Propagation" (i.e. see
here, for example) allows one to compute sums over a range in O(lg(n)), and update ranges in O(lg(n)) as well. In this problem you will compute something much harder:
The sum of squares over a range with range updates of 2 types:
1) increment in a range
2) set all numbers the same in a range.
Input
There will be T (T <= 25) test
cases in the input file. First line of the input contains two positive integers, N (N <= 100,000) and Q
(Q <= 100,000). The next line contains N integers,
each at most 1000. Each of the next Qlines
starts with a number, which indicates the type of operation:
2 st nd -- return the sum of the squares of the numbers with
indices in [st, nd]
{i.e., from st to nd inclusive} (1
<= st <= nd <= N).
1 st nd x -- add "x" to all numbers with indices in [st, nd] (1
<= st <= nd <= N, and
-1,000 <= x <= 1,000).
0 st nd x -- set all numbers with indices in
[st, nd] to
"x" (1 <= st <= nd <= N, and
-1,000 <= x <= 1,000).
Output
For each test case output the “Case <caseno>:” in
the first line and from the second line output the sum of squares for each operation of type 2. Intermediate overflow will not occur
with proper use of 64-bit signed integer.
Example
Input:
2
4 5
1 2 3 4
2 1 4
0 3 4 1
2 1 4
1 3 4 1
2 1 4
1 1
1
2 1 1
Output:
Case 1:
30
7
13
Case 2:
1
Added by: | Chen Xiaohong |
Date: | 2012-07-11 |
Time limit: | 6s |
Source limit: | 50000B |
Memory limit: | 256MB |
Cluster: | Pyramid (Intel Pentium III 733 MHz) |
Languages: | All |
题意:
有三种操作:将区间中的全部数置为x;将区间中的全部数加上x;求区间内全部数的平方和。
分析:
先考虑假设不须要求平方和,仅仅是求和,我们须要维护这些数据:addv-区间内的数共同加上的值;setv-区间内的数都置为的值(setv=INF表示不设置);sumv-区间内的数加上addv之前的值。
但这题求的是平方和。似乎不是非常好维护。假设仅仅是set操作,还是非常好维护的,那么难点就在于add操作了。考虑例如以下等式:(x+v)^2=x^2+2xv+v^2,x是add操作之前的数,v是add的数。这是一个数的情况。那么一段区间内的数呢?
显然有sum(xi^2)+(v^2)*length+2*sum(xi)*v。这样问题就迎刃而解了,仅仅要再维护一个区间的平方和即可,当set时直接改,add时加上(v^2)*length+2*sum(xi)*v即可。
/*
*
* Author : fcbruce
*
* Time : Fri 03 Oct 2014 04:16:10 PM CST
*
*/
#include <cstdio>
#include <iostream>
#include <sstream>
#include <cstdlib>
#include <algorithm>
#include <ctime>
#include <cctype>
#include <cmath>
#include <string>
#include <cstring>
#include <stack>
#include <queue>
#include <list>
#include <vector>
#include <map>
#include <set>
#define sqr(x) ((x)*(x))
#define LL long long
#define itn int
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
#define eps 1e-10 #ifdef _WIN32
#define lld "%I64d"
#else
#define lld "%lld"
#endif #define maxm
#define maxn 100007 using namespace std; int addv[maxn<<2],setv[maxn<<2];
long long sumv[maxn<<2],sqrsumv[maxn<<2]; inline void pushdown(int k,int l,int r)
{
int lc=k*2+1,rc=k*2+2,m=l+r>>1;
addv[lc]+=addv[k];
addv[rc]+=addv[k];
addv[k]=0; if (setv[k]!=INF)
{
setv[lc]=setv[rc]=setv[k];
sumv[lc]=(LL)setv[lc]*(m-l);sumv[rc]=(LL)setv[rc]*(r-m);
sqrsumv[lc]=sqr((LL)setv[k]*(m-l));sqrsumv[rc]=sqr((LL)setv[rc])*(r-m);
addv[lc]=addv[rc]=0;
setv[k]=INF;
}
} inline void pushup(int k,int l,int r)
{
int lc=k*2+1,rc=k*2+2,m=l+r>>1; sumv[k]=sumv[lc]+sumv[rc]+(LL)addv[lc]*(m-l)+(LL)addv[rc]*(r-m);
sqrsumv[k]=sqrsumv[lc]+sqrsumv[rc]+(LL)(r-l)*(addv[k])+2ll*sumv[k]*addv[k];
} void build(int k,int l,int r)
{
addv[k]=0;
setv[k]=INF;
sumv[k]=sqrsumv[k]=0ll; if (r-l==1)
{
scanf("%d",&sumv[k]);
sqrsumv[k]=sqr((LL)sumv[k]);
return ;
} build(k*2+1,l,l+r>>1);
build(k*2+2,l+r>>1,r); pushup(k,l,r);
} void update_add(int a,int b,int v,int k,int l,int r)
{
if (b<=l || r<=a) return ;
if (a<=l && r<=b)
{
addv[k]+=v;
sqrsumv[k]+=sqr((LL)v)*(r-l)+2ll*v*sumv[k];
return ;
} pushdown(k,l,r); update_add(a,b,v,k*2+1,l,l+r>>1);
update_add(a,b,v,k*2+2,l+r>>1,r); pushup(k,l,r);
} void update_set(int a,int b,int v,int k,int l,int r)
{
if (b<=l || r<=a) return ;
if (a<=l && r<=b)
{
addv[k]=0;
setv[k]=v;
sumv[k]=(LL)v*(r-l);
sqrsumv[k]=sqr((LL)v)*(r-l);
return ;
} pushdown(k,l,r); update_set(a,b,v,k*2+1,l,l+r>>1);
update_set(a,b,v,k*2+2,l+r>>1,r); pushup(k,l,r);
} long long query(int a,int b,int k,int l,int r)
{
if (b<=l || r<=a) return 0ll;
if (a<=l && r<=b) return sqrsumv[k]; pushdown(k,l,r); return query(a,b,k*2+1,l,l+r>>1)+query(a,b,k*2+2,l+r>>1,r);
} int main()
{
#ifdef FCBRUCE
freopen("/home/fcbruce/code/t","r",stdin);
#endif // FCBRUCE int T_T,__=0;
scanf("%d",&T_T); while (T_T--)
{
int n,m;
scanf("%d%d",&n,&m); build(0,0,n); printf("Case %d:\n",++__); int op,a,b,v;
while (m--)
{
scanf("%d",&op); switch (op)
{
case 0:
scanf("%d%d%d",&a,&b,&v);
a--;
update_set(a,b,v,0,0,n);
break;
case 1:
scanf("%d%d%d",&a,&b,&v);
a--;
update_add(a,b,v,0,0,n);
break;
case 2:
scanf("%d %d",&a,&b);
a--;
printf(lld "\n",query(a,b,0,0,n));
break;
}
}
} return 0;
}