DZY Loves Topological Sorting
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 221 Accepted Submission(s): 52
from vertex u
to vertex v
, u
comes before v
in the ordering.
Now, DZY has a directed acyclic graph(DAG). You should find the lexicographically largest topological ordering after erasing at most k
edges from the graph.
)
The first line, three integers n,m,k(1≤n,m≤105,0≤k≤m)
.
Each of the next m
lines has two integers: u,v(u≠v,1≤u,v≤n)
, representing a direct edge(u→v)
.
1 2
4 5
2 4
3 4
2 3
3 2 0
1 2
1 3
1 3 2
Case 1.
Erase the edge (2->3),(4->5).
And the lexicographically largest topological ordering is (5,3,1,2,4).
Problem B - DZY Loves Topological Sorting
因为我们要求最后的拓扑序列字典序最大,所以一定要贪心地将标号越大的点越早入队。我们定义点i的入度为di。假设当前还能删去k条边,那么我们一定会把当前还没入队的di≤k的最大的i找出来,把它的di条入边都删掉,然后加入拓扑序列。可以证明,这一定是最优的。
具体实现可以用线段树维护每个位置的di,在线段树上二分可以找到当前还没入队的di≤k的最大的i。于是时间复杂度就是O((n+m)logn). 不过,这里面说的还有一点不太清楚,
转一下另一个题解:
http://blog.csdn.net/glqac/article/details/44710897
看题意以为是个拓扑排序。事实上,就是个线段树。因为最多可以删k条边, 所以就是在线段树里找入度小于等于k的最大值,那么保存个区间最小就ok了。如果右子树的区间最小小于等于k那么就往右边走,因为是要找字典序最大的。当k是0,也是这样找,就跟topological sort是一样的。然后删除一个点就在线段树那个点置最大值,再删除他的边。因为总共也就m条边不超过10^5。
总复杂度o(n+m)logn。
我的解法:
用优先队列,当前节点的入度小于k便入队列,出队列时以节点编号为优先权,如果小于等于k,则输出,反之,跳过。不过写的时候遇到几个问题:
1.节点重复入队列没事,但是,不能让已经在队列中的再入队列。故要用vis,vis=0暂时不在队列中,vis=-1,在队列中,vis=1,已经输出。
2.判断队首元素的入度是否 小于k时,要用现在的入度,而不是入队列时的入度,因为,可能在处理其它点的时候,该点的入度已经发生了变化。
总的来说,还是线段树的方法思路清晰~~
13278084 | 2015-03-29 08:49:19 | Accepted | 5195 | 561MS | 6988K | 2158 B | C++ | czy |
13278083 | 2015-03-29 08:49:04 | Time Limit Exceeded | 5195 | 2000MS | 8308K | 2158 B | G++ | czy |
#include <cstdio>
#include <cstring>
#include <stack>
#include <vector>
#include <map>
#include <algorithm>
#include <queue> #define ll long long
int const N = ;
int const M = ;
int const inf = ;
ll const mod = ; using namespace std; int n,m;
int k;
int vis[N];
vector<int> bian[N];
int r[N]; struct node
{
friend bool operator < (node n1,node n2)
{
return n1.index < n2.index;
}
int index;
int d;
}; void ini()
{
int u,v;
memset(r,,sizeof(r));
memset(vis,,sizeof(vis));
int i;
for(i=;i<=n;i++){
bian[i].clear();
}
for(i=;i<=m;i++){
scanf("%d%d",&u,&v);
r[ v ]++;
bian[ u ].push_back( v );
} } void solve()
{
node te,nt;
int i;
priority_queue<node> que;
for(i=n;i>=;i--){
if(r[ i ]<=k){
te.index=i;
te.d=r[i];
que.push(te);
vis[i]=-;
}
} int ff=;
vector<int>::iterator it;
while(que.size()>=){
te=que.top();
que.pop();
// printf(" \nu=%d r=%d k=%d\n",te.index,te.d,k);
if(r[te.index]<=k){
k-=r[te.index];
vis[te.index]=;
}
else{
vis[te.index]=;
continue;
}
if(ff==){
ff=;
printf("%d",te.index);
}
else{
printf(" %d",te.index);
}
for(it=bian[te.index].begin();it!=bian[te.index].end();it++)
{
int y=*it;
r[y]--;
if(r[y]<=k && vis[y]==){
nt.index=y;
nt.d=r[y];
que.push(nt);
vis[y]=-;
}
}
}
printf("\n");
} void out()
{ } int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
//scanf("%d",&T);
//for(int cnt=1;cnt<=T;cnt++)
//while(T--)
while(scanf("%d%d%d",&n,&m,&k)!=EOF)
{
ini();
solve();
out();
}
}