尝试失败的
https://github.com/soloIife/yolov5_for_rknn
rknn toolkit examples里面自带的均可转为rknn,yolov5s无法转换
尝试成功的
import yaml
from rknn.api import RKNN
import cv2
_model_load_dict = {
'caffe': 'load_caffe',
'tensorflow': 'load_tensorflow',
'tflite': 'load_tflite',
'onnx': 'load_onnx',
'darknet': 'load_darknet',
'pytorch': 'load_pytorch',
'mxnet': 'load_mxnet',
'rknn': 'load_rknn',
}
yaml_file = './config.yaml'
def main():
with open(yaml_file, 'r') as F:
config = yaml.load(F)
# print('config is:')
# print(config)
model_type = config['running']['model_type']
print('model_type is {}'.format(model_type))#检查模型的类型
rknn = RKNN(verbose=True)
#配置文件
print('--> config model')
rknn.config(**config['config'])
print('done')
print('--> Loading model')
load_function = getattr(rknn, _model_load_dict[model_type])
ret = load_function(**config['parameters'][model_type])
if ret != 0:
print('Load yolo failed! Ret = {}'.format(ret))
exit(ret)
print('done')
####
#print('hybrid_quantization')
#ret = rknn.hybrid_quantization_step1(dataset=config['build']['dataset'])
if model_type != 'rknn':
print('--> Building model')
ret = rknn.build(**config['build'])
print('acc_eval')
#rknn.accuracy_analysis(inputs='./dataset.txt', target='rk3399pro')
#print('acc_eval done!')
if ret != 0:
print('Build yolo failed!')
exit(ret)
else:
print('--> skip Building model step, cause the model is already rknn')
#导出RKNN模型
if config['running']['export'] is True:
print('--> Export RKNN model')
ret = rknn.export_rknn(**config['export_rknn'])
if ret != 0:
print('Init runtime environment failed')
exit(ret)
else:
print('--> skip Export model')
exit()
#初始化
print('--> Init runtime environment')
ret = rknn.init_runtime(**config['init_runtime'])
if ret != 0:
print('Init runtime environment failed')
exit(ret)
print('done')
print('--> load img')
img = cv2.imread(config['img']['path'])
print('img shape is {}'.format(img.shape))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
inputs = [img]
print(inputs[0][0:10,0,0])
#推理
if config['running']['inference'] is True:
print('--> Running model')
config['inference']['inputs'] = inputs
#print(config['inference'])
outputs = rknn.inference(inputs)
#outputs = rknn.inference(config['inference'])
print('len of output {}'.format(len(outputs)))
print('outputs[0] shape is {}'.format(outputs[0].shape))
print(outputs[0][0][0:2])
else:
print('--> skip inference')
#评价
if config['running']['eval_perf'] is True:
print('--> Begin evaluate model performance')
config['inference']['inputs'] = inputs
perf_results = rknn.eval_perf(inputs=[img])
else:
print('--> skip eval_perf')
if __name__ == '__main__':
main()
running:
model_type: onnx # 转换模型的类型
export: True
inference: False
eval_perf: True
parameters:
caffe:
model: './mobilenet_v2.prototxt'
proto: 'caffe' #lstm_caffe
blobs: './mobilenet_v2.caffemodel'
tensorflow:
tf_pb: './ssd_mobilenet_v1_coco_2017_11_17.pb'
inputs: ['FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0/BatchNorm/batchnorm/mul_1']
outputs: ['concat', 'concat_1']
input_size_list: [[300, 300, 3]]
tflite:
model: './sample/tflite/mobilenet_v1/mobilenet_v1.tflite'
onnx: # 填写要转换模型的model
model: './best.onnx' #best_op.onnx #best_noop.onnx
#C:\Users\HP\Desktop\CODE\yolov5_for_rknn-master\weights\best.onnx
darknet:
model: './yolov3-tiny.cfg'
weight: './yolov3.weights'
pytorch:
model: './yolov5.pt'
input_size_list: [[3, 512, 512]]
mxnet:
symbol: 'resnext50_32x4d-symbol.json'
params: 'resnext50_32x4d-4ecf62e2.params'
input_size_list: [[3, 224, 224]]
rknn:
path: './bestrk.rknn'
config:
#mean_value: [[0,0,0]]
#std_value: [[58.82,58.82,58.82]]
channel_mean_value: '0 0 0 255' # 123.675 116.28 103.53 58.395 # 0 0 0 255
reorder_channel: '0 1 2' # '2 1 0'
need_horizontal_merge: False
batch_size: 1
epochs: -1
target_platform: ['rk3399pro']
quantized_dtype: 'asymmetric_quantized-u8'
#asymmetric_quantized-u8,dynamic_fixed_point-8,dynamic_fixed_point-16
optimization_level: 3
build:
do_quantization: True
dataset: './dataset.txt' # '/home/zen/rknn_convert/quant_data/hand_dataset/pic_path_less.txt'
pre_compile: False
export_rknn:
export_path: './best_noop1.rknn'
init_runtime:
target: rk3399pro
device_id: null
perf_debug: False
eval_mem: False
async_mode: False
img: &img
path: './test.jpg'
inference:
inputs: *img
data_type: 'uint8'
data_format: 'nhwc' # 'nchw', 'nhwc'
inputs_pass_through: None
eval_perf:
inputs: *img
data_type: 'uint8'
data_format: 'nhwc'
is_print: True
rknn尝试了1.6.0 无法兼容slice模块 重装1.7.0解决问题