刚学习pytorch,简单记录一下
"""
test Funcition
""" import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F class Net(nn.Module):
''' a neural network with pytorch'''
def __init__(self):
# 父类的构造方法
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x def num_flat_features(self, x):
size = x.size()[1:]
num_features = 1
for s in size:
num_features *= s
return num_features net = Net()
# 查看网络
print(net) # 查看模型需要学习的参数
params = list(net.parameters())
print(len(params))
for param in params:
print(param.size()) # 输入数据
input = Variable(torch.randn(1,1,32,32))
print(input)
out = net(input)
print(out) # 损失函数
target = Variable(torch.arange(1, 11, dtype=torch.float32))
print(target)
criterion = nn.MSELoss()
loss = criterion(out, target)
print(loss)
输出结果: