Pytorch项目基本结构

梳理一下Pytorch项目的基本结构(其实TF的也差不多是这样,这种思路可以迁移到别的深度学习框架中)

结构树

-------checkpoints #存放训练完成的模型文件

? ----xxx.pkl #模型文件

--------data #存放数据文件(如txt)或者数据预处理文件

? ---__ init __.py

? ---xxx.txt #数据

? ---dataset.py #数据集相关

? ---get_data.sh #一般用于下载某些数据

--------models #存放模型,一般一个模型对应一个.py文件

? ---__ init __.py

? ---xxxNet.py

? ---xxxModel.py

--------utils #存放一些工具函数,如可视化等

? ---__ init __.py

? ---visualize.py

--------config.py #配置文件

--------train.py #用于训练模型,可视为主文件

--------test.py #用于测试模型

流程

1、获取数据

使用.sh文件下载或者其他方法获得数据

2、数据载入

一般会有一个文件把数据处理成适合的格式,然后通过加载器(Dataloader)载入模型中使用,这个Dataloader可能是独立的,也可能集成在train.py里面

3、训练

顾名思义,使用载入的数据对定义的模型进行训练。这个过程基本上是使用train.py进行,结果是你会得到一个.pkl结尾的模型文件

4、测试

用一部分数据对训练好的模型进行测试(这些数据可以来自之前导入的数据,也可以是新的数据),使用test.py进行,调用损失函数,打印日志(就是你看到的那些在console里刷新的log)

5、使用模型

就是调用即可,先给出我们存放模型的位置,然后加载即可(没有实操,后续再更新)

注:

  • 模型.py文件中,一般是用一个函数或者一个类来承载一个具体模型,其中定义着模型的不同层
  • train.py是工程的核心,里面定义了训练时需要的各项参数、训练次数等重要信息

Pytorch项目基本结构

上一篇:异常处理


下一篇:Spark(二)关于对Spark的误解