1 import tensorflow as tf 2 print(tf.__version__) 3 4 5 for gpu in tf.config.experimental.list_physical_devices(‘GPU‘): 6 tf.config.experimental.set_memory_growth(gpu, True) 7 8 9 def nin_block(num_channels, kernel_size, strides, padding): 10 blk = tf.keras.models.Sequential() 11 blk.add(tf.keras.layers.Conv2D(num_channels, kernel_size, strides=strides, 12 padding=padding, activation=‘relu‘)) 13 blk.add(tf.keras.layers.Conv2D(num_channels, kernel_size=1, activation=‘relu‘)) 14 blk.add(tf.keras.layers.Conv2D(num_channels, kernel_size=1, activation=‘relu‘)) 15 return blk 16 17 18 net = tf.keras.models.Sequential() 19 net.add(nin_block(96, kernel_size=11, strides=4, padding=‘valid‘)) 20 net.add(tf.keras.layers.MaxPool2D(pool_size=3, strides=2)) 21 net.add(nin_block(256, kernel_size=5, strides=1, padding=‘same‘)) 22 net.add(tf.keras.layers.MaxPool2D(pool_size=3, strides=2)) 23 net.add(nin_block(384, kernel_size=3, strides=1, padding=‘same‘)) 24 net.add(tf.keras.layers.MaxPool2D(pool_size=3, strides=2)) 25 net.add(tf.keras.layers.Dropout(0.5)) 26 net.add(nin_block(10, kernel_size=3, strides=1, padding=‘same‘)) 27 net.add(tf.keras.layers.GlobalAveragePooling2D()) 28 net.add(tf.keras.layers.Flatten()) 29 30 31 X = tf.random.uniform((1, 224, 224, 1)) 32 for blk in net.layers: 33 X = blk(X) 34 print(blk.name, ‘output shape: \t‘, X.shape) 35 36 37 import numpy as np 38 39 class DataLoader(): 40 def __init__(self): 41 fashion_mnist = tf.keras.datasets.fashion_mnist 42 (self.train_images, self.train_labels), (self.test_images, self.test_labels) = fashion_mnist.load_data() 43 self.train_images = np.expand_dims(self.train_images.astype(np.float32)/255.0, axis=-1) 44 self.test_images = np.expand_dims(self.test_images.astype(np.float32)/255.0, axis=-1) 45 self.train_labels = self.train_labels.astype(np.int32) 46 self.test_labels = self.test_labels.astype(np.int32) 47 self.num_train, self.num_test = self.train_images.shape[0], self.test_images.shape[0] 48 49 def get_batch_train(self, batch_size): 50 index = np.random.randint(0, np.shape(self.train_images)[0], batch_size) 51 #need to resize images to (224, 224) 52 resized_images = tf.image.resize_with_pad(self.train_images[index], 224, 224,) 53 return resized_images.numpy(), self.train_labels[index] 54 55 def get_batch_test(self, batch_size): 56 index = np.random,randint(0, np.shape(self.test_images)[0], batch_size) 57 #need to resize to (224, 224) 58 resized_images = tf.image.resize_with_pad(self.test_images[index], 224, 224,) 59 return resized_images.numpy(), self.test_labels[index] 60 61 batch_size = 128 62 dataLoader = DataLoader() 63 x_batch, y_batch = dataLoader.get_batch_train(batch_size) 64 print(‘x_batch shape:‘, x_batch.shape, ‘y_batch shape:‘, y_batch.shape) 65 66 67 68 def train_nin(): 69 #net.load_weights(‘5.8_nin_weights.h5‘) 70 epoch = 5 71 num_iter = dataLoader.num_train//batch_size 72 for e in range(epoch): 73 for n in range(num_iter): 74 x_batch, y_batch = dataLoader.get_batch_train(batch_size) 75 net.fit(x_batch, y_batch) 76 if n%200 == 0: 77 net.save_weights(‘5.8_nin_weights.h5‘) 78 79 80 #optimizer = tf.keras.optimizers.SGD(learning_rate=0.06, momentum=0.3, nesterov=False) 81 optimizer = tf.keras.optimizers.Adam(lr=1e-6) 82 net.compile(optimizer=optimizer, 83 loss=‘sparse_categorical_crossentropy‘, 84 metrics=[‘accuracy‘]) 85 x_batch, y_batch = dataLoader.get_batch_train(batch_size) 86 net.fit(x_batch, y_batch) 87 train_nin()