动态规划
public class Solution
{
public int NumSquares(int n)
{
var list = new List<int>();
list.Add();
for (int i = ; i <= n; i++)
{
list.Add(i);//每一个数字,初始化为全部由1构成
}
for (int i = ; i <= n; i++)
{
for (int j = ; j * j <= i; j++)
{
var x = list[i];//当前值的构成数量,由全部是1来构成
var s = i - j * j;//减去一个平方数后的余数
var t = list[s];//余数值的构成数量
var y = t + ;//因为减过j*j,因此用余数的构成数量+1,相当于计算原值的构成数量 list[i] = Math.Min(x, y);
}
}
return list[n];
}
}
补充一个python的实现,在leetcode上会TLE,经查询发现在讨论区中也有其他的人遇到了相同的TLE问题。
应该是对python语言的判断机制有问题,这种“平台语言杀”的问题出现过多次了。
class Solution:
def numSquares(self, n: int) -> int:
dp = [] * (n + )
#初始化,所有的数字都由''组成,dp中每个元素值为组成的数量
for i in range(,n+):
dp[i] = i
for i in range(,n+):
for j in range(,int(i**0.5)+):
res = i - j * j#减去一个完全平方数后的剩余值
dp[i] = min(dp[i],dp[res] + )
return dp[n]
经过修改可以AC了,但是效率是比较低的:
class Solution:
def numSquares(self, n: int) -> int:
dp = list(range(n+1))
for i in range(,n+):
for j in range(,int(i**0.5)+):
res = i - j * j#减去一个完全平方数后的剩余值
dp[i] = min(dp[i],dp[res] + )
return dp[n]
既然python不能用dp方法提交,那就再提供一种别的思路,使用广度优先遍历(BFS):
class Solution:
def numSquares(self, n: int) -> int:
power = set()
base =
#生成符合条件的所有完全平方数,存储在power集合中
while base*base <= n:
curnum = base*base
if curnum == n:
return
power.add(curnum)
base +=
#level为返回值,表示最少的完全平方数的数量
level =
#初始目标设置为n
target = {n}
#判断条件target不为空
while len(target) > :
cur = set()
#在目标集合中循环,获得一个值
for i in target:
#在完全平方数集合中循环,获得一个值
for e in power:
#目标值 - 某个完全平方数 的差值,也是完全平方数
if i-e in power:
#返回 当前level +
return level+
#目标值 - 某个完全平方数 的差值,不是完全平方数,且大于0
if i-e > :
#将这个差值存储在‘下一层’
cur.add(i-e)
#用下一层的值更新target
target = cur
#层级+
level +=
以n=15为例,其计算流程如下:
先计算小于等于15的值中,所有的完全平方数,如上图矩形区域所示(1,4,9)三个数值。
第一层的target中的值是:(15),用15分别减去power中的数值,得到第二层;
第二层的target中的值是:(14,11,6),三个数字都不在target集合中,因此继续计算第三层,用这三个数字分别减去power中的数值,得到第三层;
第三层的target中的值是:(13, 10, 5, 10, 7, 2, 5, 2, -3),其中10,5,2出现了重复,使用set会自动去重,而-3 小于0,也会被过滤掉,
最终得到第三层的数值为:(13,10,5,7,2),这五个数字都不在power中,因此继续用这5个数字计算第四层:
当计算5时,可得到 5 - 1 = 4,而4在power中,因此结束循环。此时节点5所在的“树的高度”为3(根结点从1开始计算),因此level + 1 等于4。
最终返回4,即为所求,最终的完全平方数的组合是由线上的被减的值和叶子节点的值组成,即:[1,9,1,4]。