Spark SQL的Parquet那些事儿

Parquet是一种列式存储格式,很多种处理引擎都支持这种存储格式,也是spark sql的默认存储格式。Spark SQL支持灵活的读和写Parquet文件,并且对parquet文件的schema可以自动解析。当Spark SQL需要写成Parquet文件时,处于兼容的原因所有的列都被自动转化为了nullable。

读写Parquet文件

// Encoders for most common types are automatically provided by importing spark.implicits._    
import spark.implicits._    
    
    
val peopleDF = spark.read.json("examples/src/main/resources/people.json")    
    
    
// DataFrames can be saved as Parquet files, maintaining the schema information    
peopleDF.write.parquet("people.parquet")    
    
    
// Read in the parquet file created above    
// Parquet files are self-describing so the schema is preserved    
// The result of loading a Parquet file is also a DataFrame    
val parquetFileDF = spark.read.parquet("people.parquet")    
    
    
// Parquet files can also be used to create a temporary view and then used in SQL statements    
parquetFileDF.createOrReplaceTempView("parquetFile")    
val namesDF = spark.sql("SELECT name FROM parquetFile WHERE age BETWEEN 13 AND 19")    
namesDF.map(attributes => "Name: " + attributes(0)).show()    
// +------------+    
// |       value|    
// +------------+    
// |Name: Justin|    
// +------------+

分区发现

分区表时很多系统支持的,比如hive,对于一个分区表,往往是采用表中的某一或多个列去作为分区的依据,分区是以文件目录的形式体现。所有内置的文件源(Text/CSV/JSON/ORC/Parquet)都支持自动的发现和推测分区信息。例如,我们想取两个分区列,gender和country,先按照性别分区,再按照国家分区:

path    
└── to    
   └── table    
       ├── gender=male    
       │   ├── ...    
       │   │    
       │   ├── country=US    
       │   │   └── data.parquet    
       │   ├── country=CN    
       │   │   └── data.parquet    
       │   └── ...    
       └── gender=female    
           ├── ...    
           │    
           ├── country=US    
           │   └── data.parquet    
           ├── country=CN    
           │   └── data.parquet    
           └── ...

SparkSession.read.parquet 或者 SparkSession.read.load读取的目录为path/to/table的时候,会自动从路径下抽取分区信息。返回DataFrame的表结构为:

root    
|-- name: string (nullable = true)    
|-- age: long (nullable = true)    
|-- gender: string (nullable = true)    
|-- country: string (nullable = true)

细细分析一下你也会发现分区列的数据类型也是自动推断的。当前支持的数据类型有,数字类型,date,timestamp和string类型。有时候用户可能不希望自动推断分区列的类型,这时候只需要将spark.sql.sources.partitionColumnTypeInference.enabled配置为false即可。如果分区列的类型推断这个参数设置为了false,那么分区列的类型会被认为是string。

从spark 1.6开始,分区发现默认情况只会发现给定路径下的分区。比如,上面的分区表,假如你讲路径path/to/table/gender=male传递给SparkSession.read.parquet 或者 SparkSession.read.load 那么gender不会被认为是分区列。如果想检测到该分区,传给spark的路径应该是其父路径也即是path/to/table/,这样gender就会被认为是分区列。

schema合并

跟protocol buffer,avro,thrift一样,parquet也支持schema演变升级。用户可以在刚开始的时候创建简单的schema,然后根据需要随时扩展新的列。

Parquet 数据源支持自动检测新作列并且会合并schema。

由于合并schema是一个相当耗费性能的操作,而且很多情况下都是不必要的,所以从spark 1.5开始就默认关闭掉该功能。有两种配置开启方式:

通过数据源option设置mergeSchema为true。    
在全局sql配置中设置spark.sql.parquet.mergeSchema 为true.    
// This is used to implicitly convert an RDD to a DataFrame.    
import spark.implicits._    
    
    
// Create a simple DataFrame, store into a partition directory    
val squaresDF = spark.sparkContext.makeRDD(1 to 5).map(i => (i, i * i)).toDF("value", "square")    
squaresDF.write.parquet("data/test_table/key=1")    
    
    
// Create another DataFrame in a new partition directory,    
// adding a new column and dropping an existing column    
val cubesDF = spark.sparkContext.makeRDD(6 to 10).map(i => (i, i * i * i)).toDF("value", "cube")    
cubesDF.write.parquet("data/test_table/key=2")    
    
    
// Read the partitioned table    
val mergedDF = spark.read.option("mergeSchema", "true").parquet("data/test_table")    
mergedDF.printSchema()    
    
    
// The final schema consists of all 3 columns in the Parquet files together    
// with the partitioning column appeared in the partition directory paths    
// root    
//  |-- value: int (nullable = true)    
//  |-- square: int (nullable = true)    
//  |-- cube: int (nullable = true)    
//  |-- key: int (nullable = true)

hive metastore Parquet表转换

当读写hive metastore parquet格式表的时候,Spark SQL为了较好的性能会使用自己默认的parquet格式而不是采用hive SerDe。该行为是通过参数spark.sql.hive.convertMetastoreParquet空值,默认是true。

Hive和parquet兼容性

从表schema处理角度讲hive和parquet有两个主要的区别

hive是大小写敏感的,但是parquet不是。

hive会讲所有列视为nullable,但是nullability在parquet里有独特的意义。

由于上面的原因,在将hive metastore parquet转化为spark parquet表的时候,需要处理兼容一下hive的schema和parquet的schema。兼容处理的原则是:

有相同名字的字段必须要有相同的数据类型,忽略nullability。兼容处理的字段应该保持parquet侧的数据类型,这样就可以处理到nullability类型了。

兼容处理的schema应直接包含在hive元数据里的schema信息:

任何仅仅出现在parquet schema的字段将会被删除

任何仅仅出现在hive 元数据里的字段将会被视为nullable。

元数据刷新

Spark SQL为了更好的性能会缓存parquet的元数据。当spark 读取hive表的时候,schema一旦从hive转化为spark sql的,就会被spark sql缓存,如果此时表的schema被hive或者其他外部工具更新,必须要手动的去刷新元数据,才能保证元数据的一致性。

spark.catalog.refreshTable("my_table")

配置

parquet的相关的参数可以通过setconf或者set key=value的形式配置。

spark.sql.parquet.binaryAsString 默认值是false。一些parquet生产系统,尤其是impala,hive和老版本的spark sql,不区分binary和string类型。该参数告诉spark 讲binary数据当作字符串处理。

spark.sql.parquet.int96AsTimestamp 默认是true。有些parquet生产系统,尤其是parquet和hive,将timestamp翻译成INT96.该参数会提示Spark SQL讲INT96翻译成timestamp。

spark.sql.parquet.compression.codec 默认是snappy。当写parquet文件的时候设置压缩格式。如果在option或者properties里配置了compression或者parquet.compression优先级依次是:compression,parquet.compression,spark.sql.parquet.compression.codec。支持的配置类型有:none,uncompressed,snappy,gzip,lzo,brotli,lz4,zstd。在hadoop2.9.0之前,zstd需要安装ZstandardCodec,brotli需要安装BrotliCodec。

spark.sql.parquet.filterPushdown 默认是true。设置为true代表开启parquet下推执行优化。

spark.sql.hive.convertMetastoreParquet 默认是true。假如设置为false,spark sql会读取hive parquet表的时候使用Hive SerDe,替代内置的。

spark.sql.parquet.mergeSchema 默认是false。当设置为true的时候,parquet数据源会合并读取所有的parquet文件的schema,否则会从summary文件或者假如没有summary文件的话随机的选一些数据文件来合并schema。

spark.sql.parquet.writeLegacyFormat 默认是false。如果设置为true 数据会以spark 1.4和更早的版本的格式写入。比如,decimal类型的值会被以apache parquet的fixed-length byte array格式写出,该格式是其他系统例如hive,impala等使用的。如果是false,会使用parquet的新版格式。例如,decimals会以int-based格式写出。如果spark sql要以parquet输出并且结果会被不支持新格式的其他系统使用的话,需要设置为true。

Spark SQL的Parquet那些事儿

上一篇:Elasticsearch:Elasticsearch SQL介绍及实例 (一)


下一篇:Oracle Database 12C 安装教程