模型调参的方法有哪些?
①直接对模型算法本身改进。 比如:岭回归对线性回归的优化在于在线性回归的损失函数中加入L2正则化项从而牺牲无偏性降低方差。但是,在L2正则化中参数 λ \lambda λ应该选择多少?
是0.01、0.1、还是1?很多都是靠经验或者瞎猜,如何找到最优的参数 λ \lambda λ?(本质就是最优化的内容)
一般算法无非就是:梯度下降法、牛顿法等无约束优化算法或者约束优化算法。
②对超参数进行调参。
- 参数与超参数:
岭回归中的参数 λ \lambda λ和参数w之间有什么不一样?
参数w是通过设定某一个具体的 λ \lambda λ后使用类似于最小二乘法、梯度下降法等方式优化出来的,是在设定了 λ \lambda λ是多少后才优化出来的参数w。
类似于参数w一样,使用最小二乘法或者梯度下降法等最优化算法优化出来的数我们称为参数,类似于 λ \lambda λ一样,我们无法使用最小二乘法或者梯度下降法等最优化算法优化出来的数我们称为超参数。
模型参数是模型内部的配置变量,其值可以根据数据进行估计。
- 进行预测时需要参数。
- 它参数定义了可使用的模型。
- 参数是从数据估计或获悉的。
- 参数通常不由编程者手动设置。
- 参数通常被保存为学习模型的一部分。
- 参数是机器学习算法的关键,它们通常由过去的训练数据中总结得出 。
模型超参数是模型外部的配置,其值无法从数据中估计。
- 超参数通常用于帮助估计模型参数。
- 超参数通常由人工指定。
- 超参数通常可以使用启发式设置。
- 超参数经常被调整为给定的预测建模问题。
一般优化都是基于模型本身的具体形式的优化,此次调整的内容是超参数,取不同的超参数的值对模型性能的不同影响。
- 网格搜索GridSearchCV():
网格搜索:https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html?highlight=gridsearchcv#sklearn.model_selection.GridSearchCV
网格搜索结合管道:https://scikit-learn.org/stable/auto_examples/compose/plot_compare_reduction.html?highlight=gridsearchcv
网格搜索的思想非常简单,比如你有2个超参数需要去选择,那你就把所有的超参数选择列出来分别做排列组合。
举个例子: λ = 0.01 , 0.1 , 1.0 \lambda = 0.01,0.1,1.0 λ=0.01,0.1,1.0和 α = 0.01 , 0.1 , 1.0 \alpha = 0.01,0.1,1.0 α=0.01,0.1,1.0,你可以做一个排列组合,即:{[0.01,0.01],[0.01,0.1],[0.01,1],[0.1,0.01],[0.1,0.1],[0.1,1.0],[1,0.01],[1,0.1],[1,1]} ,然后针对每组超参数分别建立一个模型,然后选择测试误差最小的那组超参数。换句话说,我们需要从超参数空间中寻找最优的超参数,很像一个网格中找到一个最优的节点,因此叫网格搜索。
- 随机搜索 RandomizedSearchCV() :
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html?highlight=randomizedsearchcv#sklearn.model_selection.RandomizedSearchCV
网格搜索相当于暴力地从参数空间中每个都尝试一遍,然后选择最优的那组参数,但是不够高效,如果参数类别个数增加,尝试的次数呈指数级增长。如何更加高效的调优?
可以使用随机搜索的方式,高效的同时,结果比稀疏化网格法稍好(有时候也会极差,需要权衡)。参数的随机搜索中的每个参数都是从可能的参数值的分布中采样的。与网格搜索相比,这有两个主要优点:
- 可以独立于参数数量和可能的值来选择计算成本。
- 添加不影响性能的参数不会降低效率。
下面我们使用SVR的例子,结合管道来进行调优:
# 引入相关科学计算包
import numpy as np
import pandas as pd
k折交叉验证:是使用不同的数据组合来验证模型。
在样本量不充足的情况下,为了充分利用数据集对算法效果进行测试,将数据集随机分为 k 个包,每次将其中一个包作为测试集,剩下 k-1 个包作为训练集进行训练。
例如,你有100个样本,你在前90个样本上训练,在后10个上测试。然后在80-90上测试,其他的训练,重复下去。这样你可以得到不同的训练-测试集组合,可以给你提供更多的数据去验证模型。
其中,k 值不能太大,也不能太小。过大,会降低运算速度。若 k 与样本数量 N 相同,则是留一法(Leave-One-Out)。
k 值较大,训练集越接近整个训练样本,有利于减小模型偏差(bias)。一般可以将 k 作为超参数调试,根据表现选择合适的 k 值,有效避免过拟合。
# 我们先来对未调参的SVR进行评价:
from sklearn.svm import SVR # 引入SVR类
from sklearn.pipeline import make_pipeline # 引入管道简化学习流程
from sklearn.preprocessing import StandardScaler # 由于SVR基于距离计算,引入对数据进行标准化的类
from sklearn.model_selection import GridSearchCV # 引入网格搜索调优
from sklearn.model_selection import cross_val_score # 引入K折交叉验证
from sklearn import datasets
boston = datasets.load_boston() # 返回一个类似于字典的类
X = boston.data
y = boston.target
features = boston.feature_names
pipe_SVR = make_pipeline(StandardScaler(),
SVR())
score1 = cross_val_score(estimator=pipe_SVR,
X = X,
y = y,
scoring = 'r2',
cv = 10) # 10折交叉验证
print("CV accuracy: %.3f +/- %.3f" % ((np.mean(score1)),np.std(score1)))
CV accuracy: 0.187 +/- 0.649
sklearn.model_selection.cross_val_score(estimator, X, y=None, groups=None, scoring=None, cv=’warn’, n_jobs=None, verbose=0, fit_params=None, pre_dispatch=‘2*n_jobs’, error_score=’raise-deprecating’)
参数:
estimator: 需要使用交叉验证的算法
X: 输入样本数据
y: 样本标签
groups: 将数据集分割为训练/测试集时使用的样本的组标签(一般用不到)
scoring: 交叉验证最重要的就是他的验证方式,选择不同的评价方法,会产生不同的评价结果。具体可用哪些评价指标,官方已给出详细解释,链接:https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
cv: 交叉验证折数或可迭代的次数
n_jobs: 同时工作的cpu个数(-1代表全部)
verbose: 详细程度
fit_params: 传递给估计器(验证算法)的拟合方法的参数
pre_dispatch: 控制并行执行期间调度的作业数量。减少这个数量对于避免在CPU发送更多作业时CPU内存消耗的扩大是有用的。该参数可以是:
没有,在这种情况下,所有的工作立即创建并产生。将其用于轻量级和快速运行的作业,以避免由于按需产生作业而导致延迟一个int,给出所产生的总工作的确切数量。
一个字符串,给出一个表达式作为n_jobs的函数,如2 * n_jobs
error_score: 如果在估计器拟合中发生错误,要分配给该分数的值(一般不需要指定)
(具体的可以看这篇文章:https://blog.csdn.net/marsjhao/article/details/78678276)
# 下面我们使用网格搜索来对SVR调参:
from sklearn.pipeline import Pipeline
pipe_svr = Pipeline([("StandardScaler",StandardScaler()),
("svr",SVR())])
param_range = [0.0001,0.001,0.01,0.1,1.0,10.0,100.0,1000.0]
param_grid = [{"svr__C":param_range,"svr__kernel":["linear"]}, # 注意__是指两个下划线,一个下划线会报错的
{"svr__C":param_range,"svr__gamma":param_range,"svr__kernel":["rbf"]}]
gs = GridSearchCV(estimator=pipe_svr,
param_grid = param_grid,
scoring = 'r2',
cv = 10) # 10折交叉验证
gs = gs.fit(X,y)
print("网格搜索最优得分:",gs.best_score_)
print("网格搜索最优参数组合:\n",gs.best_params_)
网格搜索最优得分: 0.6090131432592575
网格搜索最优参数组合:
{'svr__C': 1000.0, 'svr__gamma': 0.001, 'svr__kernel': 'rbf'}
# 下面我们使用随机搜索来对SVR调参:
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import uniform # 引入均匀分布设置参数
pipe_svr = Pipeline([("StandardScaler",StandardScaler()),
("svr",SVR())])
distributions = dict(svr__C=uniform(loc=1.0, scale=4), # 构建连续参数的分布
svr__kernel=["linear","rbf"], # 离散参数的集合
svr__gamma=uniform(loc=0, scale=4))
rs = RandomizedSearchCV(estimator=pipe_svr,
param_distributions = distributions,
scoring = 'r2',
cv = 10) # 10折交叉验证
rs = rs.fit(X,y)
print("随机搜索最优得分:",rs.best_score_)
print("随机搜索最优参数组合:\n",rs.best_params_)
随机搜索最优得分: 0.29955138140542503
随机搜索最优参数组合:
{'svr__C': 1.100679611333522, 'svr__gamma': 1.8712279677013286, 'svr__kernel': 'linear'}
如何使用sklearn构建简单回归模型:
收集数据集→选择合适的特征→选择度量模型性能的指标→选择具体的模型并进行训练以优化模型到评估模型的性能并调参。