Codeforces - 662A 思路巧妙的异或

题意:给你\(n\)堆石子玩尼姆博弈,每堆石子可以是\(a_i\)也可以是\(b_i\),选择概率相等且每堆选择相互独立,求先手必胜(异或不为0)的概率

首先需要找出一种优雅的策略表示方法(利用异或的思想)

我们需要处理的是\(c_i=a_i \ xor \ b_i\)的线性基,然后用\(S\)代表\(a_i\)的整体异或,那么$S \ xor \ \((\)c_i\(的任意组合)即可表示原问题的选择策略
那么原问题首先转换为\)c_i\(是否可以凑出\)S$

剩下的我在代码中已经注释

PS.窝的天CF才A题就这么可怕的吗

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<bitset>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int MAXN = 5e5+11;
const double EPS = 1e-7;
typedef long long ll;
typedef unsigned long long ull;
const ll MOD = 10086;
unsigned int SEED = 17;
const ll INF = 1ll<<60;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
ll b[66];
int cal(int n,ll a[]){
memset(b,0,sizeof b);
int cnt=0;
rep(i,1,n){
rrep(j,62,0){
if(a[i]>>j&1){
if(b[j]) a[i]^=b[j];
else{
b[j]=a[i];
rrep(k,j-1,0) if(b[k]&&(b[j]>>k&1))b[j]^=b[k];
rep(k,j+1,62) if(b[k]>>j&1) b[k]^=b[j];
break;
}
}
}
}
rep(i,0,62) if(b[i]) cnt++;
return cnt;
}
ll A[MAXN],B[MAXN],C[MAXN],n;
int main(){
while(cin>>n){
rep(i,1,n){
A[i]=read();
B[i]=read();
}
ll S=0;
rep(i,1,n) S^=A[i],C[i]=A[i]^B[i];
int cnt=cal(n,C);
rep(i,0,62) if(S>>i&1) S^=b[i];
//注意如果i位没有别瞎异或,相当于构造时的插入但不更新的操作
if(S){//不在线性基中
printf("1/1\n");
}else{
ll ans=1ll<<cnt; //线性基的所有可能
printf("%lld/%lld\n",ans-1,ans); //把唯一存在的异或为S的剔除便是胜率
}
}
return 0;
}
上一篇:codeforces 15C. Industrial Nim


下一篇:Codeforces 1162E Thanos Nim(博弈)