前言: 搭建环境,这里使用cdh版hadoop+hive+sqoop+mysql
下载 hadoop-2.5.0-cdh5.3.6.tar.gz
hive-0.13.1-cdh5.3.6.tar.gz
sqoop-1.4.5-cdh5.3.6.tar.gz
配置 Hadoop
*.env(3个)--jdk_Path
core-sit.xml
fs.defaultFS
hadoop.tmp.dir
hdfs-site.xml
dfs.replication
mapred-site.xml
mapreduce.framework.name--yarn
mapreduce.jobhistory.address # 10020
mapreduce.jobhistory.webapp.address # 19888
yarn-site.xml
yarn.resourcemanager.hostname
yarn.nodemanager.aux-services--mapreduce_shuffle
yarn.log-aggregation-enable--true
yarn.log-aggregation.retain-seconds--108600
slave
主机地址
PS: 格式化namenode,启动hdfs与yarn
$ bin/hdfs dfs -mkdir /tmp
$ bin/hdfs dfs -mkdir -p /user/hive/warehouse
$ bin/hdfs dfs -chmod g+w /tmp
$ bin/hdfs dfs -chmod g+w /user/hive/warehouse
配置Hive
hive-env.sh
HADOOP_HOME=/opt/cdh-5.6.3/hadoop-2.5.0-cdh5.3.6
export HIVE_CONF_DIR=/opt/cdh-5.6.3/hive-0.13.1-cdh5.3.6/conf
hive-log4j.properties
hive.log.threshold=ALL
hive.root.logger=INFO,DRFA
hive.log.dir=/opt/cdh-5.6.3/hive-0.13.1-cdh5.3.6/logs
hive.log.file=hive.log
hive-site.xml # 事先将mysql部署好
javax.jdo.option.ConnectionURL--jdbc:mysql://hadoop09-linux-01.ibeifeng.com:3306/chd_metastore?createDatabaseIfNotExist=true
javax.jdo.option.ConnectionDriverName--com.mysql.jdbc.Driver
javax.jdo.option.ConnectionUserNam
javax.jdo.option.ConnectionPassword
hive.cli.print.header--true
hive.cli.print.current.db--true
hive.fetch.task.conversion--more
PS: hive目录下
$ mkdir logs
将准备好的mysql.jar包放入lib
启动 $ bin/hive
配置Sqoop
sqoop-env.sh
export HADOOP_COMMON_HOME=/opt/cdh-5.6.3/hadoop-2.5.0-cdh5.3.6
export HADOOP_MAPRED_HOME=/opt/cdh-5.6.3/hadoop-2.5.0-cdh5.3.6
export HIVE_HOME=/opt/cdh-5.6.3/hive-0.13.1-cdh5.3.6
将准备好的mysql.jar包放入lib
一、准备数据
# 在我的mysql下创建数据库和表,并插入几条数据
mysql> create database if not exists student default character set utf8 collate utf8_general_ci;
mysql> use student;
mysql> create table if not exists stu_info( id int(10) primary key not null auto_increment, name varchar(20) not null) default character set utf8 collate utf8_general_ci;
mysql> insert into stu_info(name) values("李建");
mysql> insert into stu_info(name) values("张明");
mysql> insert into stu_info(name) values("赵兴");
mysql> insert into stu_info(name) values("陈琦");
mysql> insert into stu_info(name) values("刘铭");
mysql> select id,name from stu_info;
+----+--------+
| id | name |
+----+--------+
| 1 | 李建 |
| 2 | 张明 |
| 3 | 赵兴 |
| 4 | 陈琦 |
| 5 | 刘铭 |
+----+--------+
5 rows in set (0.00 sec)
二、使用sqoop将mysql中的这张表导入到hdfs上
bin/sqoop import \
--connect \
jdbc:mysql://10.0.0.108:3306/student \
--username root \
--password root \
--table stu_info \
--target-dir /student \
--num-mappers 1 \
--fields-terminated-by '\t'
三、使用sqoop将mysql中的这张表导入到hive
方式一、
1. 在hive中创建数据库和表
create database if not exists student;
create table if not exists stu_info(id int,name string) row format delimited fields terminated by '\t';
2. bin/sqoop import \
--connect jdbc:mysql://hadoop09-linux-01.ibeifeng.com:3306/student \
--username root --password root \
--table stu_info \
--delete-target-dir \
--target-dir /user/hive/warehouse/student.db/stu_info \
--hive-import \
--hive-database student \
--hive-table stu_info \
--hive-overwrite \
--num-mappers 1 \
--fields-terminated-by '\t'
方式二、
1. 使用sqoop create-hive-table,但必须创建出自定义数据库,否则目标路径将是元数据库
2. bin/sqoop create-hive-table 、
--connect jdbc:mysql://10.0.0.108:3306/student 、
--username root --password root \
--table stu_info \
--hive-table student.stu_info
3. bin/sqoop import --connect jdbc:mysql://10.0.0.108:3306/student \
--username root --password root \
--table stu_info \
--hive-import \
--hive-database student \
--hive-table stu_info \
--hive-overwrite \
--num-mappers 1 \
--fields-terminated-by '\t' \
--delete-target-dir \
--target-dir /user/hive/warehouse/student.db/stu_info
4. 在hive中查询会发现数据全部为NULL
但是从hdfs上查看却是正常的,确定hive无法解析数据,定位在分隔符问题
使用--fields-terminated-by '\001' 即可 # \001就是ctrl+A,hive默认分隔符,mysql默认分隔符为","
五、从hdfs或hive导出数据到mysql表
1. 在mysql上准备好数据库和表
2. 数据库我就直接使用student数据库
create table if not exists stu_info_export like stu_info;
3. 根据hdfs/hive表数据分隔符为主
bin/sqoop export \
--connect jdbc:mysql://10.0.0.108/student \
--username root --password root \
--table stu_info_export \
--export-dir /user/hive/warehouse/student.db/stu_info \
--num-mappers 1 \
--input-fields-terminated-by '\001'
六、sqoop --option-file
另外 企业级增量迁移数据使用 --option-file + shell脚本
-- $ sqoop import --connect jdbc:mysql://localhost/db --username foo --table TEST
-- $ sqoop --options-file /users/homer/work/import.txt --table TEST
注意:脚本格式开头直接导入导出命令然后一行一个属性,如:
-->import
--connect
jdbc:mysql://localhost/db
--username
foo
七、使用sqoop job
$ bin/sqoop job --delete <job_id>
$ bin/sqoop job --list
$ bin/sqoop job --show <job_id>
$ bin/sqoop job --exec <job_id>
$ bin/sqoop job --create job_id -- <job-info>
$ bin/sqoop job --create stu_info -- \
import \
--connect \
jdbc:mysql://hadoop09-linux-01.ibeifeng.com:3306/sqoop \
--username root \
--password root \
--table tohdfs \
--target-dir /sqoop \
--num-mappers 1 \
--fields-terminated-by '\t' \
--check-column id \
--incremental append \
--last-value 11
PS: 增量导入(与--delete-target-dir冲突)
--check-column id
--incremental append/lastmodified(时间戳的更改)
--last-value 11
另外:
--columns field1,field2,field3
--query <ql> # 需要加 $CONDITIONS,且不能和--table连用
--where <where xxx> # 无需加$CONDITIONS