Nearest Common Ancestors
Description A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:
For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y. Write a program that finds the nearest common ancestor of two distinct nodes in a tree. Input The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.
Output Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.
Sample Input 2 Sample Output 4 Source |
题意:给出n个点,n-1条边的树,求lca(u,v);
思路:LCA
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#include<map>
using namespace std;
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN=;
const int DEG=; struct Edge{
int to,next;
}edge[MAXN*];
int head[MAXN],tot;
void addedge(int u,int v){
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
void init(){
tot=;
memset(head,-,sizeof(head));
}
int fa[MAXN][DEG]; //fa[i][j]表示结点i的第2^j个祖先
int deg[MAXN]; //深度数组 void bfs(int root){
queue<int>que;
deg[root]=;
fa[root][]=root;
que.push(root);
while(!que.empty()){
int tmp=que.front();
que.pop();
for(int i=;i<DEG;i++)
fa[tmp][i]=fa[fa[tmp][i-]][i-];
for(int i=head[tmp];i!=-;i=edge[i].next){
int v=edge[i].to;
if(v==fa[tmp][])continue;
deg[v]=deg[tmp]+;
fa[v][]=tmp;
que.push(v);
}
}
}
int LCA(int u,int v){
if(deg[u]>deg[v])swap(u,v);
int hu=deg[u],hv=deg[v];
int tu=u,tv=v;
for(int det=hv-hu,i=;det;det>>=,i++)
if(det&)
tv=fa[tv][i];
if(tu==tv)return tu;
for(int i=DEG-;i>=;i--){
if(fa[tu][i] == fa[tv][i])continue;
tu=fa[tu][i];
tv=fa[tv][i];
}
return fa[tu][];
}
bool flag[MAXN];
int main(){
int T,n,u,v;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
init();
memset(flag,false,sizeof(flag));
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
flag[v]=true;
}
int root;
for(int i=;i<=n;i++)
if(!flag[i]){
root=i;
break;
}
bfs(root);
scanf("%d%d",&u,&v);
printf("%d\n",LCA(u,v));
}
}