问题:设\(\displaystyle f\left( x \right)\)在\(\displaystyle \left( 0,1 \right)\)上二阶可导,\(\displaystyle f‘‘\left( x \right) >0\),\(\displaystyle f\left( 0 \right) =0\),求证:
\[\int_0^1{xf\left( x \right) \text{d}x}\geqslant \frac{2}{3}\int_0^1{f\left( x \right) \text{d}x}
\]
过程如下:由于\(\displaystyle f‘‘\left( x \right) >0\),所以有
\[\frac{f\left( x \right) +f\left( 0 \right)}{2}\geqslant \frac{\int_0^x{f\left( t \right) \text{d}t}}{x}
\]
即
\[xf\left( x \right) \geqslant 2\int_0^x{f\left( t \right) \text{d}t}
\]
对上式左右两边同时对\(\displaystyle x\)在0到1上积分,得到
\[\begin{align*}
\int_0^1{xf\left( x \right) \text{d}x}&\geqslant 2\int_0^1{\left( \int_0^x{f\left( t \right) \text{d}t} \right) \text{d}x}
\&=2x\int_0^x{f\left( t \right) \text{d}t}\mid_{0}^{1}-2\int_0^1{xf\left( x \right) \text{d}x}
\&=2\int_0^1{f\left( x \right) \text{d}x}-2\int_0^1{xf\left( x \right) \text{d}x}
\end{align*}
\]
移项从而得到
\[\int_0^1{xf\left( x \right) \text{d}x}\geqslant \frac{2}{3}\int_0^1{f\left( x \right) \text{d}x}
\]