条件:设\(\displaystyle f\left( x \right)\)在\(\displaystyle \left[ 0,1 \right]\)上连续,\(\displaystyle f\left( x \right) \geqslant 0\),且对\(\displaystyle \forall x\in \left[ 0,1 \right]\)有
\[\int_x^1{f\left( t \right) \text{d}t}\geqslant \frac{1-x^2}{2}
\]
问题:
\[\int_0^1{f^2\left( x \right) \text{d}x}\geqslant \frac{1}{3}\tag{1}
\]
\[\int_0^1{x^{n+1}f\left( x \right) \text{d}x}\geqslant \frac{1}{n+3}\tag{2}
\]
\[\int_0^1{f^{n+1}\left( x \right) \text{d}x}\geqslant \int_0^1{x^nf\left( x \right) \text{d}x}\tag{3}
\]
\[\int_0^1{f^{n+1}\left( x \right) \text{d}x}\geqslant \int_0^1{xf^n\left( x \right) \text{d}x}\tag{4}
\]
过程如下:
(1)由于
\[\begin{align*}
\int_0^1{\left[ f\left( x \right) -x \right] ^2\text{d}x}&=\int_0^1{f^2\left( x \right) \text{d}x}-2\int_0^1{xf\left( x \right) \text{d}x}+\int_0^1{x^2\text{d}x}
\&=\int_0^1{f^2\left( x \right) \text{d}x}-2\int_0^1{xf\left( x \right) \text{d}x}+\frac{1}{3}
\&\geqslant 0
\end{align*}
\]
所以有
\[\begin{align*}
\int_0^1{f^2\left( x \right) \text{d}x}&\geqslant 2\int_0^1{xf\left( x \right) \text{d}x}-\frac{1}{3}
\&=-2\int_0^1{x\text{d}\left( \int_x^1{f\left( t \right) \text{d}t} \right)}-\frac{1}{3}
\&=-2x\int_x^1{f\left( t \right) \text{d}t}\mid_{0}^{1}+2\int_0^1{\left( \int_x^1{f\left( t \right) \text{d}t} \right) \text{d}x}-\frac{1}{3}
\&\geqslant 2\int_0^1{\frac{1-x^2}{2}\text{d}x}-\frac{1}{3}
\&=\frac{1}{3}
\end{align*}
\]
不等式(1)证毕.
(2)直接凑微分与分部积分,有
\[\begin{align*}
\int_0^1{x^{n+1}f\left( x \right) \text{d}x}&=-\int_0^1{x^{n+1}\text{d}\left( \int_x^1{f\left( t \right) \text{d}t} \right)}
\&=\left( n+1 \right) \int_0^1{x^n\left( \int_x^1{f\left( t \right) \text{d}t} \right) \text{d}x}
\&\geqslant \frac{n+1}{2}\int_0^1{\left( x^n-x^{n+2} \right) \text{d}x}
\&=\frac{n+1}{2}\cdot \left( \frac{1}{n+1}-\frac{1}{n+3} \right)
\&=\frac{1}{n+3}
\end{align*}
\]
不等式(2)证毕.
(3)利用均值不等式,我们得到
\[f^{n+1}\left( x \right) +nx^{n+1}\geqslant \left( n+1 \right) x^nf\left( x \right)
\]
对上述不等式两边同时对\(\displaystyle x\)在0到1上积分,并利用不等式(2),我们得到
\[\begin{align*}
\int_0^1{f^{n+1}\left( x \right) \text{d}x}+\frac{n}{n+2}&\geqslant \left( n+1 \right) \int_0^1{x^nf\left( x \right) \text{d}x}
\&=n\int_0^1{x^nf\left( x \right) \text{d}x}+\int_0^1{x^nf\left( x \right) \text{d}x}
\&\geqslant \frac{n}{n+2}+\int_0^1{x^nf\left( x \right) \text{d}x}
\end{align*}
\]
因此
\[\int_0^1{f^{n+1}\left( x \right) \text{d}x}\geqslant \int_0^1{x^nf\left( x \right) \text{d}x}
\]
(4)首先,我们有
\[\left( f^n\left( x \right) -x^n \right) \left( f\left( x \right) -x \right) \geqslant 0
\]
即有
\[f^{n+1}\left( x \right) +x^{n+1}\geqslant x^nf\left( x \right) +xf^n\left( x \right)
\]
对上述不等式两边同时对\(\displaystyle x\)在0到1上积分,并利用不等式(2),我们得到
\[\begin{align*}
\int_0^1{f^{n+1}\left( x \right) \text{d}x}+\frac{1}{n+2}&\geqslant \int_0^1{x^nf\left( x \right) \text{d}x}+\int_0^1{xf^n\left( x \right) \text{d}x}
\&\geqslant \frac{1}{n+2}+\int_0^1{xf^n\left( x \right) \text{d}x}
\end{align*}
\]
因此
\[\int_0^1{f^{n+1}\left( x \right) \text{d}x}\geqslant \int_0^1{xf^n\left( x \right) \text{d}x}
\]
Ngo Q A, Thang D D, Dat T T, et al. Notes on an integral inequality[J]. J. Inequal. Pure Appl. Math, 2006, 7(4).