铭文一级:
======
Pull方式整合
Flume Agent的编写: flume_pull_streaming.conf
simple-agent.sources = netcat-source
simple-agent.sinks = spark-sink
simple-agent.channels = memory-channel
simple-agent.sources.netcat-source.type = netcat
simple-agent.sources.netcat-source.bind = hadoop000
simple-agent.sources.netcat-source.port = 44444
simple-agent.sinks.spark-sink.type = org.apache.spark.streaming.flume.sink.SparkSink
simple-agent.sinks.spark-sink.hostname = hadoop000
simple-agent.sinks.spark-sink.port = 41414
simple-agent.channels.memory-channel.type = memory
simple-agent.sources.netcat-source.channels = memory-channel
simple-agent.sinks.spark-sink.channel = memory-channel
注意点:先启动flume 后启动Spark Streaming应用程序
flume-ng agent \
--name simple-agent \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/flume_pull_streaming.conf \
-Dflume.root.logger=INFO,console
spark-submit \
--class com.imooc.spark.FlumePullWordCount \
--master local[2] \
--packages org.apache.spark:spark-streaming-flume_2.11:2.2.0 \
/home/hadoop/lib/sparktrain-1.0.jar \
hadoop000 41414
铭文二级:
Pull方式与Flume对接(常用):
改flume的配置文件,改sink的名称以及必须属性
官网Advanced Source大标题下有路径:Flume Integration Guide
一、导入jar包三个(第二个如果是用maven构建的scala工程则自动有):
groupId = org.apache.spark
artifactId = spark-streaming-flume-sink_2.11
version = 2.2.1
groupId = org.scala-lang
artifactId = scala-library
version = 2.11.8
groupId = org.apache.commons
artifactId = commons-lang3
version = 3.5
二、修改自定义sink:
agent.sinks = spark //自起名字
agent.sinks.spark.type = org.apache.spark.streaming.flume.sink.SparkSink
agent.sinks.spark.hostname = <hostname of the local machine> //hadoop000
agent.sinks.spark.port = <port to listen on for connection from Spark> //41414
agent.sinks.spark.channel = memoryChannel//自起名字
三、将createStream=>改成createPollingStream即可
四、启动顺序:
启动Flume->启动代码->telnet localhost 44444
五、打包到服务器
注释掉.setMaster后面的代码,可先删除sparktrain-1.0.jar,重新打包。
spark-submit \
--class com.imooc.spark.FlumePullWordCount \
--master local[2] \
--packages org.apache.spark:spark-streaming-flume_2.11:2.2.0 \
/home/hadoop/lib/sparktrain-1.0.jar \
hadoop000 41414
(竟然没有--name??--name是指定UI界面的名称)
整合Spark Streaming与Kafka实战:
一、Receiver-based
二、Direct Approch(常用)
Receiver方法(会有数据丢失)
此处选版本:Kafka Integration Guide
Write Ahead Logs (spark1.2版本引入的)
先确定修改的配置文件能用再进行编码:
具体步骤=>
1.先启动zk:./zkServer.sh start
2.启动kafka:./kafka-server-start.sh -daemon $KAFKA_HOME/config/server.properties
3.创建topic
./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic kafka_streaming_topic
./kafka-topics.sh --list --zookeeper localhost:2181
4.通过控制台测试是否能正常生产与消费
./kafka-console-producer.sh --broker-list localhost:9092 --topic kafka_streaming_topic
./kafka-console-consumer.sh --zookeeper localhost:2181 --topic kafka_streaming_topic
编码(与Flume相类似)=>
1.引入依赖(记得查看maven project是否真的导入了)
groupId = org.apache.spark
artifactId = spark-streaming-kafka-0-8_2.11
version = 2.2.1
2.建KafkaReceiverWordCount类
main方法->最基础的四行代码->引入代码:
val kafkaStream = KafkaUtils.createStream(streamingContext,
[ZK quorum], [consumer group id], [per-topic number of Kafka partitions to consume])
->引入数组,含四个数->val Array(zkQuorum,group,topics,numThreads) = args
->判断是否传入四个参数->构建topicMap:
val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
->topicMap带入KafkaUtils参数
->messages.map(_._2).flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).print()
messages即官网代码的kafkaSteam
KafkaUtils
3.打包jar
4.部署到服务器
(一般生产上是不能联网的,所以--packages使用不了,只能下载后用--jars来完成)