实验五 | JPEG编解码原理及解码器的调试

JPEG编解码原理及解码器的调试

一、实验目的

掌握JPEG编解码系统的基本原理。初步掌握复杂的数据压缩算法实现,并能根据理论分析需要实现所对应数据的输出。

二、JPEG编解码原理

1、编码原理

实验五 | JPEG编解码原理及解码器的调试
(1)0偏置电平下移
例如从(0,255)变为(-128,127),对于灰度级为2^n 的像素,通过减去2^n-1无符号整数变为有符号数,将绝对值大的数出现的概率减小,提高编码效率。
(2)8*8DCT变换
实验五 | JPEG编解码原理及解码器的调试
将最小编码单元MCU定为8X8的块,每一个单独的分量图像(Y、U、V)据此划分,每一块进行两维离散余弦DCT变换,这是为了使得能量集中,去冗余和去相关性,提高编码效率。**
(3)量化
采用中平型均匀量化器,根据人眼视觉的敏感特性,分为亮度量化值和色差量化值两种量化表,对低频部分细量化,对高频部分粗量化,该过程会产生一定的误差。实验五 | JPEG编解码原理及解码器的调试

给出建议量化表: 真正量化表=缩放因子*基本量化表
实验五 | JPEG编解码原理及解码器的调试

(4)DC直流系数差分编码
DCT变换后,每一块的能量集中导致DC系数非常大;且相邻图像块的DC系数变化不大,即存在冗余。
因此使用差分脉冲调制编码DPCM技术,对相邻图像块之间量化DC系数的差值DIFF编码:实验五 | JPEG编解码原理及解码器的调试

(5)AC交流系数Z字扫描与RLE
DCT变换后系数集中在左上角的低频分量区,因此采用Z字形按频率的高低读出,可使用游程编码RLE,都是零的最后可以给出EOB。
实验五 | JPEG编解码原理及解码器的调试

(6)Huffman编码

  • 对DIFF用Huffman编码:
    分成类别,类别ID为一元码编码;类内索引采用定长码
    实验五 | JPEG编解码原理及解码器的调试
  • AC系数游程编码(run,level)联合用Huffman编码:
    类内索引采用定长码
    实验五 | JPEG编解码原理及解码器的调试

2、解码原理

即编码的逆过程:

  • 解码Huffman编码
  • 解码DC差值
  • 重构量化后的系数
  • DCT逆变换
  • 丢弃填充的行列
  • 反0偏置
  • 对丢失的CbCr分量差值(下采样的逆过程)

三、JPEG文件格式

SOI,Start of Image,图像开始
APP0,Application,应用程序保留标记0
DQT,Define Quantization Table,定义量化表
SOF0,Start of Frame,帧图像开始
DHT,Define Huffman Table,定义哈夫曼表
SOS,Start of Scan,扫描开始 12字节
EOI,End of Image,图像结束 2字节

1、segment的形式组织

JPEG文件以segment的形式组织,其中每个segment以一个marker开始,而每个marker均以0xFF和一个marker的标识符开始,随后为2字节的marker长度(不包含marker的起始两字节)和对应的payload(SOI和EOI marker只有2字节的标识符)。连续的0xFF字节并不是marker的起始标志,而是用来填充的特殊字符。

2、格式举例分析实验五 | JPEG编解码原理及解码器的调试

test.jpg 1024*1024
使用FlexHEX进行解析:

1、SOI&EOI

  • SOI ,Start of Image, 图像开始
    标记代码 2字节 固定值0xFFD8
  • EOI,End of Image, 图像结束 2字节
    标记代码 2字节 固定值0xFFD9
    实验五 | JPEG编解码原理及解码器的调试
    实验五 | JPEG编解码原理及解码器的调试

2、APP0
标记代码 2字节 固定值0xFFE0
包含9个具体字段:
① 数据长度 2字节 ①~⑨9个字段的总长度
② 标识符 5字节 固定值0x4A46494600,即字符串“JFIF0”
③ 版本号 2字节 一般是0x0102,表示JFIF的版本号1.2
④ X和Y的密度单位 1字节 只有三个值可选
0:无单位;1:点数/英寸;2:点数/厘米
⑤ X方向像素密度 2字节 取值范围未知
⑥ Y方向像素密度 2字节 取值范围未知
⑦ 缩略图水平像素数目 1字节 取值范围未知
⑧ 缩略图垂直像素数目 1字节 取值范围未知
⑨ 缩略图RGB位图 长度可能是3的倍数 缩略图RGB位图数据
实验五 | JPEG编解码原理及解码器的调试

“00 10”数据总长度16字节; “4A 46 49 46 00"标识符对应字符串“JFIF0”;版本号0x0101;”00“ X和Y的密度单位为0;”00 01 00 01“X和Y方向像素密度;”00 00“缩略图水平和垂直像素数目为0

3、DQT
标记代码 2字节 固定值0xFFDB
包含9个具体字段:
① 数据长度 2字节 字段①和多个字段②的总长度
② 量化表 数据长度-2字节
a) 精度及量化表ID 1字节
高4位:精度,只有两个可选值 0:8位;1:16位
低4位:量化表ID,取值范围为0~3
b) 表项 (64×(精度+1))字节
例如8位精度的量化表,其表项长度为64×(0+1)=64字节
本标记段中,字段②可以重复出现,表示多个量化表,但最多只能出现4次
实验五 | JPEG编解码原理及解码器的调试
以”FF DB“为标记的量化表有两个,分别长度为67字节,量化精度为8bit,量化表ID为0和1,表项长度都为64字节。

4、SOF0
标记代码 2字节 固定值0xFFC0
包含9个具体字段:
① 数据长度 2字节 ①~⑥六个字段的总长度
② 精度 1字节 每个数据样本的位数
通常是8位,一般软件都不支持 12位和16位
③ 图像高度 2字节 图像高度(单位:像素)
④ 图像宽度 2字节 图像宽度(单位:像素)
⑤ 颜色分量数 1字节 只有3个数值可选
1:灰度图;3:YCrCb或YIQ;4:CMYK
而JFIF中使用YCrCb,故这里颜色分量数恒为3
⑥颜色分量信息 颜色分量数×3字节(通常为9字节)
a)颜色分量ID 1字节
b)水平/垂直采样因子 1字节
高4位:水平采样因子
低4位:垂直采样因子
c) 量化表 1字节
当前分量使用的量化表的ID
实验五 | JPEG编解码原理及解码器的调试
"00 11"表示总长度11字节; "08"每个数据样本为8位;"04 00 04 00"图像高宽为1024*1024;“03”颜色分量数YCrCb或YIQ;分量Y使用的量化表ID为0,CbCr使用的量化表ID为1。

5、DHT
标记代码 2字节 固定值0xFFC4
包含2个具体字段:
① 数据长度 2字节
② huffman表 数据长度-2字节

  • 表ID和表类型 1字节
    高4位:类型,只有两个值可选
    0:DC直流;1:AC交流
    低4位:哈夫曼表ID,
    注意,DC表和AC表分开编码
  • 不同位数的码字数量 16字节
  • 编码内容 16个不同位数的码字数量之和(字节)
    本标记段中,字段②可以重复出现(一般4次),也可以只出现1次。
    实验五 | JPEG编解码原理及解码器的调试
    4张Huffman表的长度分别为29字节、62字节、30字节、47字节;表类型和ID分别为“00”DC表0、 “10”AC表0、“01”DC表1、“11”AC表1;”00 03 01 01 01 01 01 01 01 00…00"表示DC表0中2位的码字3个,3位-9位的码字各1个,其余位数的无码字。"04 05 …07 08"表示10个叶子结点按从小到大排列,其权值依次为04、 05、 06、 03、 02、 01、 00、09、 07、 08

6、SOS
标记代码 2字节 固定值0xFFDA
包含2个具体字段:
①数据长度 2字节 ①~④两个字段的总长度
②颜色分量数 1字节 应该和SOF中的字段⑤的值相同,即:
1:灰度图是;3: YCrCb或YIQ;4:CMYK。
③颜色分量信息
a) 颜色分量ID 1字节
b) 直流/交流系数表号 1字节
高4位:直流分量使用的哈夫曼树编号
低4位:交流分量使用的哈夫曼树编号
④ 压缩图像数据
a)谱选择开始 1字节 固定值0x00
b)谱选择结束 1字节 固定值0x3F
c)谱选择 1字节 在基本JPEG中总为00
实验五 | JPEG编解码原理及解码器的调试
“00 0C”表示长度为12字节,“03”颜色分量数YCrCb或YIQ;“00” 、“11”、“11”三分量的直流和交流分别对应哈夫曼树编号。

四、JPEG解码流程

int convert_one_image(const char *infilename, const char *outfilename, int output_format)
{
  FILE *fp;
  unsigned int length_of_file;
  unsigned int width, height;
  unsigned char *buf;
  struct jdec_private *jdec;
  unsigned char *components[3];

  /* Load the Jpeg into memory */
  fp = fopen(infilename, "rb");
  if (fp == NULL)
    exitmessage("Cannot open filename\n");
  length_of_file = filesize(fp);
  buf = (unsigned char *)malloc(length_of_file + 4);
  if (buf == NULL)
    exitmessage("Not enough memory for loading file\n");
  fread(buf, length_of_file, 1, fp);
  fclose(fp);

  /* Decompress it */
  jdec = tinyjpeg_init();
  if (jdec == NULL)
    exitmessage("Not enough memory to alloc the structure need for decompressing\n");

  if (tinyjpeg_parse_header(jdec, buf, length_of_file)<0)
    exitmessage(tinyjpeg_get_errorstring(jdec));

  /* Get the size of the image */
  tinyjpeg_get_size(jdec, &width, &height);

  snprintf(error_string, sizeof(error_string),"Decoding JPEG image...\n");
  if (tinyjpeg_decode(jdec, output_format) < 0)
    exitmessage(tinyjpeg_get_errorstring(jdec));

  /* 
   * Get address for each plane (not only max 3 planes is supported), and
   * depending of the output mode, only some components will be filled 
   * RGB: 1 plane, YUV420P: 3 planes, GREY: 1 plane
   */
  tinyjpeg_get_components(jdec, components);

  /* Save it */
  switch (output_format)
   {
    case TINYJPEG_FMT_RGB24:
    case TINYJPEG_FMT_BGR24:
      write_tga(outfilename, output_format, width, height, components);
      break;
    case TINYJPEG_FMT_YUV420P:
      write_yuv(outfilename, width, height, components);
      break;
    case TINYJPEG_FMT_GREY:
      write_pgm(outfilename, width, height, components);
      break;
   }

  /* Only called this if the buffers were allocated by tinyjpeg_decode() */
  tinyjpeg_free(jdec);
  /* else called just free(jdec); */

  free(buf);
  return 0;
}

解析JPEG文件头:

int tinyjpeg_parse_header(struct jdec_private *priv, const unsigned char *buf, unsigned int size)
{
  int ret;

  /* Identify the file */
  if ((buf[0] != 0xFF) || (buf[1] != SOI))
    snprintf(error_string, sizeof(error_string),"Not a JPG file ?\n");

  priv->stream_begin = buf+2;
  priv->stream_length = size-2;
  priv->stream_end = priv->stream_begin + priv->stream_length;

  ret = parse_JFIF(priv, priv->stream_begin);

  return ret;
}

建立huffman表

static void build_huffman_table(const unsigned char *bits, const unsigned char *vals, struct huffman_table *table)
{
  unsigned int i, j, code, code_size, val, nbits;
  unsigned char huffsize[HUFFMAN_BITS_SIZE+1], *hz;
  unsigned int huffcode[HUFFMAN_BITS_SIZE+1], *hc;
  int next_free_entry;

  /*
   * Build a temp array 
   *   huffsize[X] => numbers of bits to write vals[X]
   */
  hz = huffsize;
  for (i=1; i<=16; i++)
   {
     for (j=1; j<=bits[i]; j++)
       *hz++ = i;
   }
  *hz = 0;

  memset(table->lookup, 0xff, sizeof(table->lookup));
  for (i=0; i<(16-HUFFMAN_HASH_NBITS); i++)
    table->slowtable[i][0] = 0;

  /* Build a temp array
   *   huffcode[X] => code used to write vals[X]
   */
  code = 0;
  hc = huffcode;
  hz = huffsize;
  nbits = *hz;
  while (*hz)
   {
     while (*hz == nbits)
      {
	*hc++ = code++;
	hz++;
      }
     code <<= 1;
     nbits++;
   }

  /*
   * Build the lookup table, and the slowtable if needed.
   */
  next_free_entry = -1;
  for (i=0; huffsize[i]; i++)
   {
     val = vals[i];
     code = huffcode[i];
     code_size = huffsize[i];
	#if TRACE
     fprintf(p_trace,"val=%2.2x code=%8.8x codesize=%2.2d\n", val, code, code_size);
	 fflush(p_trace);
    #endif
     table->code_size[val] = code_size;
     if (code_size <= HUFFMAN_HASH_NBITS)
      {
	/*
	 * Good: val can be put in the lookup table, so fill all value of this
	 * column with value val 
	 */
	int repeat = 1UL<<(HUFFMAN_HASH_NBITS - code_size);
	code <<= HUFFMAN_HASH_NBITS - code_size;
	while ( repeat-- )
	  table->lookup[code++] = val;

      }
     else
      {
	/* Perhaps sorting the array will be an optimization */
	uint16_t *slowtable = table->slowtable[code_size-HUFFMAN_HASH_NBITS-1];
	while(slowtable[0])
	  slowtable+=2;
	slowtable[0] = code;
	slowtable[1] = val;
	slowtable[2] = 0;
	/* TODO: NEED TO CHECK FOR AN OVERFLOW OF THE TABLE */
      }

   }
}

解析marker标识”:

static int parse_JFIF(struct jdec_private *priv, const unsigned char *stream)
{
  int chuck_len;
  int marker;
  int sos_marker_found = 0;
  int dht_marker_found = 0;
  const unsigned char *next_chunck;

  /* Parse marker */
  while (!sos_marker_found)
   {
     if (*stream++ != 0xff)
       goto bogus_jpeg_format;
     /* Skip any padding ff byte (this is normal) */
     while (*stream == 0xff)
       stream++;

     marker = *stream++;
     chuck_len = be16_to_cpu(stream);
     next_chunck = stream + chuck_len;
     switch (marker)
      {
       case SOF:
	 if (parse_SOF(priv, stream) < 0)
	   return -1;
	 break;
       case DQT:
	 if (parse_DQT(priv, stream) < 0)
	   return -1;
	 break;
       case SOS:
	 if (parse_SOS(priv, stream) < 0)
	   return -1;
	 sos_marker_found = 1;
	 break;
       case DHT:
	 if (parse_DHT(priv, stream) < 0)
	   return -1;
	 dht_marker_found = 1;
	 break;
       case DRI:
	 if (parse_DRI(priv, stream) < 0)
	   return -1;
	 break;
       default:
#if TRACE
	fprintf(p_trace,"> Unknown marker %2.2x\n", marker);
	fflush(p_trace);
#endif
	 break;
      }

     stream = next_chunck;
   }

  if (!dht_marker_found) {
#if TRACE
	  fprintf(p_trace,"No Huffman table loaded, using the default one\n");
	  fflush(p_trace);
#endif
    build_default_huffman_tables(priv);
  }

#ifdef SANITY_CHECK
  if (   (priv->component_infos[cY].Hfactor < priv->component_infos[cCb].Hfactor)
      || (priv->component_infos[cY].Hfactor < priv->component_infos[cCr].Hfactor))
    snprintf(error_string, sizeof(error_string),"Horizontal sampling factor for Y should be greater than horitontal sampling factor for Cb or Cr\n");
  if (   (priv->component_infos[cY].Vfactor < priv->component_infos[cCb].Vfactor)
      || (priv->component_infos[cY].Vfactor < priv->component_infos[cCr].Vfactor))
    snprintf(error_string, sizeof(error_string),"Vertical sampling factor for Y should be greater than vertical sampling factor for Cb or Cr\n");
  if (   (priv->component_infos[cCb].Hfactor!=1) 
      || (priv->component_infos[cCr].Hfactor!=1)
      || (priv->component_infos[cCb].Vfactor!=1)
      || (priv->component_infos[cCr].Vfactor!=1))
    snprintf(error_string, sizeof(error_string),"Sampling other than 1x1 for Cr and Cb is not supported");
#endif

  return 0;
bogus_jpeg_format:
#if TRACE
  fprintf(p_trace,"Bogus jpeg format\n");
  fflush(p_trace);
#endif
  return -1;
}

建立量化表:

static void build_quantization_table(float *qtable, const unsigned char *ref_table)
{
  /* Taken from libjpeg. Copyright Independent JPEG Group's LLM idct.
   * For float AA&N IDCT method, divisors are equal to quantization
   * coefficients scaled by scalefactor[row]*scalefactor[col], where
   *   scalefactor[0] = 1
   *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
   * We apply a further scale factor of 8.
   * What's actually stored is 1/divisor so that the inner loop can
   * use a multiplication rather than a division.
   */
  int i, j;
  static const double aanscalefactor[8] = {
     1.0, 1.387039845, 1.306562965, 1.175875602,
     1.0, 0.785694958, 0.541196100, 0.275899379
  };
  const unsigned char *zz = zigzag;

  for (i=0; i<8; i++) {
     for (j=0; j<8; j++) {
       *qtable++ = ref_table[*zz++] * aanscalefactor[i] * aanscalefactor[j];
     }
   }

}

解析量化表DQT:

static int parse_DQT(struct jdec_private *priv, const unsigned char *stream)
{
  int qi;
  float *table;
  const unsigned char *dqt_block_end;
#if TRACE
  fprintf(p_trace,"> DQT marker\n");
  fflush(p_trace);
#endif
  dqt_block_end = stream + be16_to_cpu(stream);
  stream += 2;	/* Skip length */

  while (stream < dqt_block_end)
   {
     qi = *stream++;
#if SANITY_CHECK
     if (qi>>4)
       snprintf(error_string, sizeof(error_string),"16 bits quantization table is not supported\n");
     if (qi>4)
       snprintf(error_string, sizeof(error_string),"No more 4 quantization table is supported (got %d)\n", qi);
#endif
     table = priv->Q_tables[qi];
     build_quantization_table(table, stream);
     stream += 64;
   }
#if TRACE
  fprintf(p_trace,"< DQT marker\n");
  fflush(p_trace);
#endif
  return 0;
}

解析DHT:

static int parse_DHT(struct jdec_private *priv, const unsigned char *stream)
{
  unsigned int count, i;
  unsigned char huff_bits[17];
  int length, index;

  length = be16_to_cpu(stream) - 2;
  stream += 2;	/* Skip length */
#if TRACE
  fprintf(p_trace,"> DHT marker (length=%d)\n", length);
  fflush(p_trace);
#endif

  while (length>0) {
     index = *stream++;

     /* We need to calculate the number of bytes 'vals' will takes */
     huff_bits[0] = 0;
     count = 0;
     for (i=1; i<17; i++) {
	huff_bits[i] = *stream++;
	count += huff_bits[i];
     }
#if SANITY_CHECK
     if (count >= HUFFMAN_BITS_SIZE)
       snprintf(error_string, sizeof(error_string),"No more than %d bytes is allowed to describe a huffman table", HUFFMAN_BITS_SIZE);
     if ( (index &0xf) >= HUFFMAN_TABLES)
       snprintf(error_string, sizeof(error_string),"No more than %d Huffman tables is supported (got %d)\n", HUFFMAN_TABLES, index&0xf);
#if TRACE
     fprintf(p_trace,"Huffman table %s[%d] length=%d\n", (index&0xf0)?"AC":"DC", index&0xf, count);
	 fflush(p_trace);
#endif
#endif

     if (index & 0xf0 )
       build_huffman_table(huff_bits, stream, &priv->HTAC[index&0xf]);
     else
       build_huffman_table(huff_bits, stream, &priv->HTDC[index&0xf]);

     length -= 1;
     length -= 16;
     length -= count;
     stream += count;
  }
#if TRACE
  fprintf(p_trace,"< DHT marker\n");
  fflush(p_trace);
#endif
  return 0;
}

static int parse_DRI(struct jdec_private *priv, const unsigned char *stream)
{
  unsigned int length;

#if TRACE
  fprintf(p_trace,"> DRI marker\n");
  fflush(p_trace);
#endif

  length = be16_to_cpu(stream);

#if SANITY_CHECK
  if (length != 4)
    snprintf(error_string, sizeof(error_string),"Length of DRI marker need to be 4\n");
#endif

  priv->restart_interval = be16_to_cpu(stream+2);

#if TRACE
  fprintf(p_trace,"Restart interval = %d\n", priv->restart_interval);
  fprintf(p_trace,"< DRI marker\n");
  fflush(p_trace);
#endif
  return 0;
}

解析SOS:

static int parse_SOS(struct jdec_private *priv, const unsigned char *stream)
{
  unsigned int i, cid, table;
  unsigned int nr_components = stream[2];
#if TRACE
  fprintf(p_trace,"> SOS marker\n");
  fflush(p_trace);
#endif

#if SANITY_CHECK
  if (nr_components != 3)
    snprintf(error_string, sizeof(error_string),"We only support YCbCr image\n");
#endif

  stream += 3;
  for (i=0;i<nr_components;i++) {
     cid = *stream++;
     table = *stream++;
#if SANITY_CHECK
     if ((table&0xf)>=4)
	snprintf(error_string, sizeof(error_string),"We do not support more than 2 AC Huffman table\n");
     if ((table>>4)>=4)
	snprintf(error_string, sizeof(error_string),"We do not support more than 2 DC Huffman table\n");
     if (cid != priv->component_infos[i].cid)
        snprintf(error_string, sizeof(error_string),"SOS cid order (%d:%d) isn't compatible with the SOF marker (%d:%d)\n",
	      i, cid, i, priv->component_infos[i].cid);
#if TRACE
     fprintf(p_trace,"ComponentId:%d  tableAC:%d tableDC:%d\n", cid, table&0xf, table>>4);
	 fflush(p_trace);
#endif
#endif
     priv->component_infos[i].AC_table = &priv->HTAC[table&0xf];
     priv->component_infos[i].DC_table = &priv->HTDC[table>>4];
  }
  priv->stream = stream+3;
#if TRACE
  fprintf(p_trace,"< SOS marker\n");
  fflush(p_trace);
#endif
  return 0;
}

解析SOF:

static int parse_SOF(struct jdec_private *priv, const unsigned char *stream)
{
  int i, width, height, nr_components, cid, sampling_factor;
  int Q_table;
  struct component *c;
#if TRACE
  fprintf(p_trace,"> SOF marker\n");
  fflush(p_trace);
#endif
  print_SOF(stream);

  height = be16_to_cpu(stream+3);
  width  = be16_to_cpu(stream+5);
  nr_components = stream[7];
#if SANITY_CHECK
  if (stream[2] != 8)
    snprintf(error_string, sizeof(error_string),"Precision other than 8 is not supported\n");
  if (width>JPEG_MAX_WIDTH || height>JPEG_MAX_HEIGHT)
    snprintf(error_string, sizeof(error_string),"Width and Height (%dx%d) seems suspicious\n", width, height);
  if (nr_components != 3)
    snprintf(error_string, sizeof(error_string),"We only support YUV images\n");
  if (height%16)
    snprintf(error_string, sizeof(error_string),"Height need to be a multiple of 16 (current height is %d)\n", height);
  if (width%16)
    snprintf(error_string, sizeof(error_string),"Width need to be a multiple of 16 (current Width is %d)\n", width);
#endif
  stream += 8;
  for (i=0; i<nr_components; i++) {
     cid = *stream++;
     sampling_factor = *stream++;
     Q_table = *stream++;
     c = &priv->component_infos[i];
#if SANITY_CHECK
     c->cid = cid;
     if (Q_table >= COMPONENTS)
       snprintf(error_string, sizeof(error_string),"Bad Quantization table index (got %d, max allowed %d)\n", Q_table, COMPONENTS-1);
#endif
     c->Vfactor = sampling_factor&0xf;
     c->Hfactor = sampling_factor>>4;
     c->Q_table = priv->Q_tables[Q_table];
#if TRACE
     fprintf(p_trace,"Component:%d  factor:%dx%d  Quantization table:%d\n",
           cid, c->Hfactor, c->Hfactor, Q_table );
	 fflush(p_trace);
#endif

  }
  priv->width = width;
  priv->height = height;
#if TRACE
  fprintf(p_trace,"< SOF marker\n");
  fflush(p_trace);
#endif

  return 0;
}

解析JPEG实际数据:

int tinyjpeg_decode(struct jdec_private *priv, int pixfmt)
{
  unsigned int x, y, xstride_by_mcu, ystride_by_mcu;
  unsigned int bytes_per_blocklines[3], bytes_per_mcu[3];
  decode_MCU_fct decode_MCU;
  const decode_MCU_fct *decode_mcu_table;
  const convert_colorspace_fct *colorspace_array_conv;
  convert_colorspace_fct convert_to_pixfmt;

  if (setjmp(priv->jump_state))
    return -1;

  /* To keep gcc happy initialize some array */
  bytes_per_mcu[1] = 0;
  bytes_per_mcu[2] = 0;
  bytes_per_blocklines[1] = 0;
  bytes_per_blocklines[2] = 0;

  decode_mcu_table = decode_mcu_3comp_table;
  switch (pixfmt) {
     case TINYJPEG_FMT_YUV420P:
       colorspace_array_conv = convert_colorspace_yuv420p;
       if (priv->components[0] == NULL)
	 priv->components[0] = (uint8_t *)malloc(priv->width * priv->height);
       if (priv->components[1] == NULL)
	 priv->components[1] = (uint8_t *)malloc(priv->width * priv->height/4);
       if (priv->components[2] == NULL)
	 priv->components[2] = (uint8_t *)malloc(priv->width * priv->height/4);
       bytes_per_blocklines[0] = priv->width;
       bytes_per_blocklines[1] = priv->width/4;
       bytes_per_blocklines[2] = priv->width/4;
       bytes_per_mcu[0] = 8;
       bytes_per_mcu[1] = 4;
       bytes_per_mcu[2] = 4;
       break;

     case TINYJPEG_FMT_RGB24:
       colorspace_array_conv = convert_colorspace_rgb24;
       if (priv->components[0] == NULL)
	 priv->components[0] = (uint8_t *)malloc(priv->width * priv->height * 3);
       bytes_per_blocklines[0] = priv->width * 3;
       bytes_per_mcu[0] = 3*8;
       break;

     case TINYJPEG_FMT_BGR24:
       colorspace_array_conv = convert_colorspace_bgr24;
       if (priv->components[0] == NULL)
	 priv->components[0] = (uint8_t *)malloc(priv->width * priv->height * 3);
       bytes_per_blocklines[0] = priv->width * 3;
       bytes_per_mcu[0] = 3*8;
       break;

     case TINYJPEG_FMT_GREY:
       decode_mcu_table = decode_mcu_1comp_table;
       colorspace_array_conv = convert_colorspace_grey;
       if (priv->components[0] == NULL)
	 priv->components[0] = (uint8_t *)malloc(priv->width * priv->height);
       bytes_per_blocklines[0] = priv->width;
       bytes_per_mcu[0] = 8;
       break;

     default:
#if TRACE
		 fprintf(p_trace,"Bad pixel format\n");
		 fflush(p_trace);
#endif
       return -1;
  }

  xstride_by_mcu = ystride_by_mcu = 8;
  if ((priv->component_infos[cY].Hfactor | priv->component_infos[cY].Vfactor) == 1) {
     decode_MCU = decode_mcu_table[0];
     convert_to_pixfmt = colorspace_array_conv[0];
#if TRACE
     fprintf(p_trace,"Use decode 1x1 sampling\n");
	 fflush(p_trace);
#endif
  } else if (priv->component_infos[cY].Hfactor == 1) {
     decode_MCU = decode_mcu_table[1];
     convert_to_pixfmt = colorspace_array_conv[1];
     ystride_by_mcu = 16;
#if TRACE
     fprintf(p_trace,"Use decode 1x2 sampling (not supported)\n");
	 fflush(p_trace);
#endif
  } else if (priv->component_infos[cY].Vfactor == 2) {
     decode_MCU = decode_mcu_table[3];
     convert_to_pixfmt = colorspace_array_conv[3];
     xstride_by_mcu = 16;
     ystride_by_mcu = 16;
#if TRACE 
	 fprintf(p_trace,"Use decode 2x2 sampling\n");
	 fflush(p_trace);
#endif
  } else {
     decode_MCU = decode_mcu_table[2];
     convert_to_pixfmt = colorspace_array_conv[2];
     xstride_by_mcu = 16;
#if TRACE
     fprintf(p_trace,"Use decode 2x1 sampling\n");
	 fflush(p_trace);
#endif
  }

  resync(priv);

  /* Don't forget to that block can be either 8 or 16 lines */
  bytes_per_blocklines[0] *= ystride_by_mcu;
  bytes_per_blocklines[1] *= ystride_by_mcu;
  bytes_per_blocklines[2] *= ystride_by_mcu;

  bytes_per_mcu[0] *= xstride_by_mcu/8;
  bytes_per_mcu[1] *= xstride_by_mcu/8;
  bytes_per_mcu[2] *= xstride_by_mcu/8;

  /* Just the decode the image by macroblock (size is 8x8, 8x16, or 16x16) */
  for (y=0; y < priv->height/ystride_by_mcu; y++)
   {
     //trace("Decoding row %d\n", y);
     priv->plane[0] = priv->components[0] + (y * bytes_per_blocklines[0]);
     priv->plane[1] = priv->components[1] + (y * bytes_per_blocklines[1]);
     priv->plane[2] = priv->components[2] + (y * bytes_per_blocklines[2]);
     for (x=0; x < priv->width; x+=xstride_by_mcu)
      {
	decode_MCU(priv);
	convert_to_pixfmt(priv);
	priv->plane[0] += bytes_per_mcu[0];
	priv->plane[1] += bytes_per_mcu[1];
	priv->plane[2] += bytes_per_mcu[2];
	if (priv->restarts_to_go>0)
	 {
	   priv->restarts_to_go--;
	   if (priv->restarts_to_go == 0)
	    {
	      priv->stream -= (priv->nbits_in_reservoir/8);
	      resync(priv);
	      if (find_next_rst_marker(priv) < 0)
		return -1;
	    }
	 }
      }
   }
#if TRACE
  fprintf(p_trace,"Input file size: %d\n", priv->stream_length+2);
  fprintf(p_trace,"Input bytes actually read: %d\n", priv->stream - priv->stream_begin + 2);
  fflush(p_trace);
#endif

  return 0;
}

五、解码器调试

将输入的JPG文件进行解码:

1.三个结构体设计

  • struct huffman_table
    存储Huffman码表
struct huffman_table
{
  /* Fast look up table, using HUFFMAN_HASH_NBITS bits we can have directly the symbol,
   * if the symbol is <0, then we need to look into the tree table */
  short int lookup[HUFFMAN_HASH_SIZE];
  /* code size: give the number of bits of a symbol is encoded */
  unsigned char code_size[HUFFMAN_HASH_SIZE];
  /* some place to store value that is not encoded in the lookup table 
   * FIXME: Calculate if 256 value is enough to store all values
   */
  uint16_t slowtable[16-HUFFMAN_HASH_NBITS][256];
};
  • struct component
    储存当前8×8像块中有关解码的信息
struct component 
{
  unsigned int Hfactor;
  unsigned int Vfactor;
  float *Q_table;		/* Pointer to the quantisation table to use */
  struct huffman_table *AC_table;
  struct huffman_table *DC_table;
  short int previous_DC;	/* Previous DC coefficient */
  short int DCT[64];		/* DCT coef */
#if SANITY_CHECK
  unsigned int cid;
#endif
};
  • struct jdec_private
    JPEG数据流结构体,用于存储JPEG图像宽高、数据流指针、Huffman码表等内容,并包含struct huffman_tablestruct component
struct jdec_private
{
  /* Public variables */
  uint8_t *components[COMPONENTS];
  unsigned int width, height;	/* Size of the image */
  unsigned int flags;

  /* Private variables */
  const unsigned char *stream_begin, *stream_end;
  unsigned int stream_length;

  const unsigned char *stream;	/* Pointer to the current stream */
  unsigned int reservoir, nbits_in_reservoir;

  struct component component_infos[COMPONENTS];
  float Q_tables[COMPONENTS][64];		/* quantization tables */
  struct huffman_table HTDC[HUFFMAN_TABLES];	/* DC huffman tables   */
  struct huffman_table HTAC[HUFFMAN_TABLES];	/* AC huffman tables   */
  int default_huffman_table_initialized;
  int restart_interval;
  int restarts_to_go;				/* MCUs left in this restart interval */
  int last_rst_marker_seen;			/* Rst marker is incremented each time */

  /* Temp space used after the IDCT to store each components */
  uint8_t Y[64*4], Cr[64], Cb[64];

  jmp_buf jump_state;
  /* Internal Pointer use for colorspace conversion, do not modify it !!! */
  uint8_t *plane[COMPONENTS];

};

2.输出文件保存为YUV文件

static void write_yuv(const char *filename, int width, int height, unsigned char **components)
{
  FILE *F;
  char temp[1024];

  snprintf(temp, 1024, "%s.Y", filename);
  F = fopen(temp, "wb");
  fwrite(components[0], width, height, F);
  fclose(F);
  snprintf(temp, 1024, "%s.U", filename);
  F = fopen(temp, "wb");
  fwrite(components[1], width*height/4, 1, F);
  fclose(F);
  snprintf(temp, 1024, "%s.V", filename);
  F = fopen(temp, "wb");
  fwrite(components[2], width*height/4, 1, F);
  //输出yuv文件//
  snprintf(temp, 1024, "%s.YUV", filename);
  F = fopen(temp, "wb");
  fwrite(components[0], width, height, F);
  fwrite(components[1], width*height/4, 1, F);
  fwrite(components[2], width*height/4, 1, F);
  fclose(F);
}

得到了output.YUV:(未显示完全)
实验五 | JPEG编解码原理及解码器的调试

3.视音频编解码调试中TRACE的目的和含义

  • 打开和关闭TRACE
  • 修改TRACE
    1为打开TRACE:
#define TRACE 1//add by nxn
#define  TRACEFILE "trace_jpeg.txt"//add by nxn

0为关闭TRACE:

#define TRACE 0//add by nxn
#define  TRACEFILE "trace_jpeg.txt"//add by nxn

trace_jpeg.txt文件包含Huffman表的解析
实验五 | JPEG编解码原理及解码器的调试

4.以txt文件输出所有的量化矩阵和所有的HUFFMAN码表
已有Huffman码表,需增加DCT矩阵的输出,
在建立量化表函数build_quantization_table中添加输出量化表的部分:

static void build_quantization_table(float *qtable, const unsigned char *ref_table)
{
  /* Taken from libjpeg. Copyright Independent JPEG Group's LLM idct.
   * For float AA&N IDCT method, divisors are equal to quantization
   * coefficients scaled by scalefactor[row]*scalefactor[col], where
   *   scalefactor[0] = 1
   *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
   * We apply a further scale factor of 8.
   * What's actually stored is 1/divisor so that the inner loop can
   * use a multiplication rather than a division.
   */
  int i, j;
  int temp;
  static const double aanscalefactor[8] = {
     1.0, 1.387039845, 1.306562965, 1.175875602,
     1.0, 0.785694958, 0.541196100, 0.275899379
  };
  const unsigned char *zz = zigzag;
  
//修改使其输出//
  for (i=0; i<8; i++) {
     for (j=0; j<8; j++) {
      temp=ref_table[*zz++];
	  *qtable++ = temp * aanscalefactor[i] * aanscalefactor[j];
	  #if TRACE
		 fprintf(p_trace,"%-6d",temp);
      #endif
     }
	 fprintf(p_trace, "\n");
   }

}

实验五 | JPEG编解码原理及解码器的调试

上一篇:Wordpress 添加图片点击放大效果


下一篇:Mac实用技巧:怎样使用终端在macOS Big Sur Finder中锁定文件!