如果想要对图像进行校准,那么透射变换是非常有效的变换方法。
- 透射变换的定义如下:将图像投影到一个新的视平面,通常也成为投影映射。
- 详情参考链接:透射变换介绍
1、举例说明
直观的来看,透视变换的作用就是将左侧图像的坐标点 [[50,0],[150,0],[0,200],[200,200]]
转化为新的坐标 [[0,0],[200,0],[0,200],[200,200]]
2、应用
原图是一个旋转过的图片,现在需要做图片矫正,将图片放正。
- 做法:手工选去需要矫正区域四个角上的点(顺序:左上、右上、右下、左下),使用透射变换对所选区域进行矫正
原图如下:
代码:
import numpy as np
import cv2
def order_points(pts):
# 初始化坐标点
rect = np.zeros((4, 2), dtype="float32")
# 获取左上角和右下角坐标点
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
# 分别计算左上角和右下角的离散差值
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts):
"""
:param image: 图片
:param pts: 鼠标选中的点集
:return: 返回变换后的图片
"""
# 获取坐标点,并将它们分离开来
rect = order_points(pts)
(tl, tr, br, bl) = rect
# 计算新图片的宽度值,选取水平差值的最大值
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
# 计算新图片的高度值,选取垂直差值的最大值
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
# 构建新图片的4个坐标点
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
# 获取仿射变换矩阵并应用它
M = cv2.getPerspectiveTransform(rect, dst)
# 进行仿射变换
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
# 返回变换后的结果
return warped
def on_mouse(event, x, y, flags, param):
global timg, points
img2 = timg.copy()
point0 = (0, 0)
if event == cv2.EVENT_LBUTTONDOWN: # 左键点击
point1 = (x, y)
points.append([x, y])
#print(x, y)
cv2.circle(img2, point1, 4, (0, 255, 0), 4)
cv2.imshow('origin', img2)
return point0
#程序获取需要矫正的区域
def rectification(img_file, points):
xscale, yscale = 0.9, 0.9
oimg = cv2.imread(img_file)
oshape = oimg.shape
timg = cv2.resize(oimg, (int(oshape[1] / xscale), int(oshape[0] / yscale))) # 放大图像
points = np.array(points, dtype=np.float32)
points[:, 0] *= oshape[1] / int(oshape[1] / xscale) # 还原像素位置的大小
points[:, 1] *= oshape[0] / int(oshape[0] / yscale)
warped = four_point_transform(oimg, points)
cv2.imwrite('images/final.png', warped ) # 保存图像
cv2.imshow('final', warped)
cv2.waitKey(0)
cv2.destroyAllWindows()
#手工选择区域进行图片矫正
def image_rectification(img_file):
global points, timg
#xscale, yscale = 0.5, 0.5 # 通过放大图像来使得点击位置更加精确
xscale, yscale = 0.9, 0.9
points = []
oimg = cv2.imread(img_file)
oshape = oimg.shape #图形规格
timg = cv2.resize(oimg, (int(oshape[1] / xscale), int(oshape[0] / yscale))) # 放大图像
print(timg.shape)
cv2.imshow('origin', timg)
cv2.setMouseCallback('origin', on_mouse)
cv2.waitKey(0) # 点完4个角点之后随便按一个键盘按键结束操作
cv2.destroyAllWindows()
points = np.array(points, dtype=np.float32)
points[:, 0] *= oshape[1] / int(oshape[1] / xscale) # 还原像素位置的大小
points[:, 1] *= oshape[0] / int(oshape[0] / yscale)
warped = four_point_transform(oimg, points)
# cv2.imwrite('warped.png', warped ) # 保存图像
cv2.imshow('origin', warped)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__':
points = []
rectification('images/test.png', points)