题目描述
给定平面上 n 对 互不相同 的点 points ,其中 points[i] = [xi, yi] 。回旋镖 是由点 (i, j, k) 表示的元组 ,其中 i 和 j 之间的距离和 i 和 k 之间的距离相等(需要考虑元组的顺序)。
返回平面上所有回旋镖的数量。
样例描述
示例 1:
输入:points = [[0,0],[1,0],[2,0]]
输出:2
解释:两个回旋镖为 [[1,0],[0,0],[2,0]] 和 [[1,0],[2,0],[0,0]]
示例 2:
输入:points = [[1,1],[2,2],[3,3]]
输出:2
思路
哈希表
- 由题意,需要假设一个作为拐点,寻找两个点使得它们到拐点的距离相等。
- 可以假设某个点作为拐点,利用哈希表记录其他点到拐点的距离,然后在所有距离相同的点里面选取两个,将结果累加起来就是所求。
- 所有点里面选两个,结合排列组合的知识,总m个的话,第一次选m种选法,第二次选是m - 1种选法。。。
代码
class Solution {
public int numberOfBoomerangs(int[][] points) {
int n = points.length;
int res = 0;
for (int i = 0; i < n; i ++ ) {
//[距离,数量] 对于某个端点i,具有相同距离的端点个数
Map<Integer, Integer> map = new HashMap<>();
//先统计距离相同的端点个数
for (int j = 0; j < n; j ++ ) {
//如果就是本端点,直接跳过
if (j == i) continue;
int x = points[i][0] - points[j][0], y = points[i][1] - points[j][1];
int dis = x * x + y * y;
map.put(dis, map.getOrDefault(dis, 0) + 1);
}
//在根据某个点作为拐点 统计有多少种
//由于 其他点都是相同距离,相等于m个数量里面选两个
for (int disc: map.keySet()) {
int num = map.get(disc);
res += num * (num - 1);
}
}
return res;
}
}