#Deep Learning回顾#之基于深度学习的目标检测(阅读小结)

原文链接:https://www.52ml.net/20287.html

这篇博文主要讲了深度学习在目标检测中的发展。

博文首先介绍了传统的目标检测算法过程:

传统的目标检测一般使用滑动窗口的框架,主要包括三个步骤:

  1. 利用不同尺寸的滑动窗口框住图中的某一部分作为候选区域;
  2. 提取候选区域相关的视觉特征。比如人脸检测常用的Harr特征;行人检测和普通目标检测常用的HOG特征等;
  3. 利用分类器进行识别,比如常用的SVM模型。

基于深度学习的目标检测分为两派:

  1. 基于区域提名的,如R-CNN、SPP-net、Fast R-CNN、Faster R-CNN、R-FCN;
  2. 端到端(End-to-End),无需区域提名的,如YOLO、SSD。

目前来说,基于区域提名的方法依然占据上风,但端到端的方法速度上优势明显,后续的发展拭目以待。

接下来是对相关研究的详细介绍。

1、首先介绍的是区域提名--选择性搜索,以及用深度学习做目标检测的早期工作--Overfeat。

选择性搜索:不断迭代合并候选区域,已被弃用。

OverFeat:  用CNN做分类、定位和检测的经典之作(马克一记)。

2、基于区域提名的方法:主要介绍R-CNN系列

R-CNN:之前的工作都是用滑动窗口的方式,速度很慢,R-CNN采用的是selective search。

它和OverFeat类似,但缺点是速度慢。

SPP-net:针对剪裁技术可能出现的问题,SPP不管是对整副图像还是裁剪后的图像,都提取

相同维度的特征,这样可以统一送至全连接层。

FAST R-CNN:主要解决2000个候选框带来的重复计算问题。

FASTER R-CNN:抛弃了selective search,引入了RPN网格。

R-FCN:将最后的全连接层换为了卷积层。

3、端到端(end-to-end):无需区域提名

YOLO:将448*448的图像分成S*S的网络,简化目标检测流程;

SSD:   YOLO的改进,分为两部分:图像分类的网络和多尺度特征映射网络。

目标检测还存在一些问题,比如小目标检测问题。

上一篇:esriSRProjCS2Type Constants


下一篇:angular2项目关于Echarts图表的处理