如果这样来理解HTTPS,一篇就够了!

1、前言

可能有初学者会问,即时通讯应用的通信安全,不就是对Socket长连接进行SSL/TLS加密这些知识吗,干吗要理解HTTPS协议呢。

这其实是个误解:当今主流的移动端IM数据通信,总结下来无外乎就是长连接+短连接的方式,长连接就是众所周之的TCP、UDP、WebSocket(WebSocket的本质还是TCP),而短连接就是HTTP/HTTPS了。即时通讯IM应用中,短连接的安全跟长连接相比,同样很重要。市面上的主流短连接通信方式,都已逐步从HTTP过渡到HTTPS了(iOS上的应用就更彻底了,苹果直接强制要求使用HTTPS协议,否则不允许上架APP Store,详见《苹果即将强制实施 ATS,你的APP准备好切换到HTTPS了吗?》。不过,鉴于多方面原因,苹果实际上推迟了ATS的强制执行,有兴趣可以到苹果官方了解)。

题外话:关于短连接、长连接的定义,微信是一个特例,微信在网络通信这一层做的比较彻底和极端,几乎再造了一套针对移动端IM的网络层框架(详见:《如约而至:微信自用的移动端IM网络层跨平台组件库Mars已正式开源》),所以针对微信来说短连接可能并不能就是HTTP/HTTPS了。

总之,无论是即时通讯IM还是其它应用,在移动网络日益发达的今天,安全显的尤为重要,HTTPS已经越来越普及,尽快拥抱它才是符合技术潮流的。

本文将尝试用通俗易懂的语言,一步步还原HTTPS的设计过程,以便您能轻松理解为什么HTTPS最终会是这副模样。但鉴于HTTPS的复杂性,本文的文字主要是为了方便您的理解,而并不代表完全遵从HTTPS的真实设计过程。在阅读本文时,你可以尝试放下已有的对HTTPS的理解,这样更利于您“理解”这个过程和技术原理。

学习交流:

- 即时通讯开发交流3群:185926912[推荐]

- 移动端IM开发入门文章:《新手入门一篇就够:从零开发移动端IM

(本文同步发布于:http://www.52im.net/thread-1890-1-1.html

2、关于作者

 
如果这样来理解HTTPS,一篇就够了!

翟志军,个人博客地址:https://showme.codes/,Github:https://github.com/zacker330。感谢作者的原创分享。

3、相关文章

要理解HTTPS,须对HTTP协议有所了解,以下文章可能是您需要的:

网络编程懒人入门(七):深入浅出,全面理解HTTP协议

从HTTP/0.9到HTTP/2:一文读懂HTTP协议的历史演变和设计思路

脑残式网络编程入门(三):HTTP协议必知必会的一些知识

现代移动端网络短连接的优化手段总结:请求速度、弱网适应、安全保障

IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token

本文是IM通讯安全知识系列文章中的第7篇,此系列总目录如下:

即时通讯安全篇(一):正确地理解和使用Android端加密算法

即时通讯安全篇(二):探讨组合加密算法在IM中的应用

即时通讯安全篇(三):常用加解密算法与通讯安全讲解

即时通讯安全篇(四):实例分析Android中密钥硬编码的风险

即时通讯安全篇(五):对称加密技术在Android平台上的应用实践

即时通讯安全篇(六):非对称加密技术的原理与应用实践

即时通讯安全篇(七):如果这样来理解HTTPS原理,一篇就够了》(本文)

4、一个引子

我们先不了聊HTTP/HTTPS,我们先从一个IM聊天软件说起。

假设我们想要实现A能发一个hello消息给B:

 
如果这样来理解HTTPS,一篇就够了!

因为只是为了方便讲解原理,我们要实现这个IM聊天的通信功能,本文只考虑安全性问题。

那么我们的这个IM聊天功能,安全性上必须要达到:

A发给B的hello消息包,即使被中间人拦截到了,也无法得知消息的内容。

好,带着这个问题,我来继续往下理解基本的通信安全知识。

好,问题域已经定义好了(现实中当然不止这一种定义)。对于解决方案,很容易就想到了对消息进行加密。

题外话,但是只有这一种方法吗?我看未必,说不定在将来会出现一种物质打破当前世界的通信假设,实现真正意义上的保密。

对于A与B这样的简单通信模型,我们很容易做出选择: 对称加密算法

 
如果这样来理解HTTPS,一篇就够了!

这就是对称加密算法,其中图中的密钥S同时扮演加密和解密的角色。具体细节不是本文范畴。

如上图所示,只要这个密钥S不公开给第三者,同时密钥S足够安全,我们就解决了我们一开始所定问题域了。因为世界上有且只有A与B知道如何加密和解密他们之间的消息。

但是,在WWW环境下,我们的Web服务器的通信模型没有这么简单:

 
如果这样来理解HTTPS,一篇就够了!

如果服务器端对所有的客户端通信都使用同样的对称加密算法,无异于没有加密。那怎么办呢?即能使用对称加密算法,又不公开密钥?请读者思考21秒钟。^_^

答案是:Web服务器与每个客户端使用不同的对称加密算法:

 
如果这样来理解HTTPS,一篇就够了!

5、如何确定对称加密算法

慢着,另一个问题来了,我们的服务器端怎么告诉客户端该使用哪种对称加密算法?

当然是通过协商:

 
如果这样来理解HTTPS,一篇就够了!

但是,你协商的过程是没有加密的,还是会被中间人拦截。那我们再对这个协商过程进行对称加密就好了,那你对协商过程加密的加密还是没有加密,怎么办?再加密不就好了……好吧,进行鸡生蛋蛋生鸡的问题了。

6、如何对协商过程进行加密

新问题来了,如何对协商过程进行加密?密码学领域中,有一种称为“非对称加密”的加密算法,特点是私钥加密后的密文,只要是公钥,都可以解密,但是公钥加密后的密文,只有私钥可以解密。私钥只有一个人有,而公钥可以发给所有的人。

 
如果这样来理解HTTPS,一篇就够了!

虽然服务器端向A、B……的方向还是不安全的,但是至少A、B向服务器端方向是安全的。

好了,如何协商加密算法的问题,我们解决了:使用非对称加密算法进行对称加密算法协商过程。

这下,你明白为什么HTTPS同时需要对称加密算法和非对称加密算法了吧?

7、协商什么加密算法

要达到Web服务器针对每个客户端使用不同的对称加密算法,同时,我们也不能让第三者知道这个对称加密算法是什么,怎么办?

使用随机数,就是使用随机数来生成对称加密算法。这样就可以做到服务器和客户端每次交互都是新的加密算法、只有在交互的那一该才确定加密算法。

这下,你明白为什么HTTPS协议握手阶段会有这么多的随机数了吧。

8、如何得到公钥?

细心的人可能已经注意到了如果使用非对称加密算法,我们的客户端A,B需要一开始就持有公钥,要不没法开展加密行为啊。

这下,我们又遇到新问题了,如何让A、B客户端安全地得到公钥?

我能想到的方案只有这些:

方案1:服务器端将公钥发送给每一个客户端;

方案2:服务器端将公钥放到一个远程服务器,客户端可以请求得到。

我们选择方案1,因为方案2又多了一次请求,还要另外处理公钥的放置问题。

9、公钥被调包了怎么办?又是一个鸡生蛋蛋生鸡问题?

但是方案1有个问题:如果服务器端发送公钥给客户端时,被中间人调包了,怎么办?

我画了张图方便理解:

 
如果这样来理解HTTPS,一篇就够了!

显然,让每个客户端的每个浏览器默认保存所有网站的公钥是不现实的。

10、使用第三方机构的公钥解决鸡生蛋蛋生鸡问题

公钥被调包的问题出现,是因为我们的客户端无法分辨返回公钥的人到底是中间人,还是真的服务器。这其实就是密码学中提的身份验证问题。

如果让你来解决,你怎么解决?如果你了解过HTTPS,会知道使用数字证书来解决。但是你想过证书的本质是什么么?请放下你对HTTPS已有的知识,自己尝试找到解决方案。

我是这样解决的。既然服务器需要将公钥传给客户端,这个过程本身是不安全,那么我们为什么不对这个过程本身再加密一次?可是,你是使用对称加密,还是非对称加密?这下好了,我感觉又进了鸡生蛋蛋生鸡问题了。

问题的难点是如果我们选择直接将公钥传递给客户端的方案,我们始终无法解决公钥传递被中间人调包的问题。

所以,我们不能直接将服务器的公钥传递给客户端,而是第三方机构使用它的私钥对我们的公钥进行加密后,再传给客户端。客户端再使用第三方机构的公钥进行解密。

下图就是我们设计的第一版“数字证书”,证书中只有服务器交给第三方机构的公钥,而且这个公钥被第三方机构的私钥加密了:

 
如果这样来理解HTTPS,一篇就够了!

如果能解密,就说明这个公钥没有被中间人调包。因为如果中间人使用自己的私钥加密后的东西传给客户端,客户端是无法使用第三方的公钥进行解密的。

原理图如下:

 
如果这样来理解HTTPS,一篇就够了!

话到此,我以为解决问题了。但是现实中HTTPS,还有一个数字签名的概念,我没法理解它的设计理由。

原来,我漏掉了一个场景:

第三方机构不可能只给你一家公司制作证书,它也可能会给中间人这样有坏心思的公司发放证书。这样的,中间人就有机会对你的证书进行调包,客户端在这种情况下是无法分辨出是接收的是你的证书,还是中间人的。因为不论中间人,还是你的证书,都能使用第三方机构的公钥进行解密。

像下面这样。。。

第三方机构向多家公司颁发证书的情况:

 
如果这样来理解HTTPS,一篇就够了!

客户端能解密同一家第三机构颁发的所有证书:

 
如果这样来理解HTTPS,一篇就够了!

最终导致其它持有同一家第三方机构证书的中间人可以进行调包:

 
如果这样来理解HTTPS,一篇就够了!

11、数字签名,解决同一机构颁发的不同证书被篡改问题

要解决这个问题,我们首先要想清楚一个问题,辨别同一机构下不同证书的这个职责,我们应该放在哪?

只能放到客户端了。意思是,客户端在拿到证书后,自己就有能力分辨证书是否被篡改了。如何才能有这个能力呢?

我们从现实中找灵感。比如你是HR,你手上拿到候选人的学历证书,证书上写了持证人,颁发机构,颁发时间等等,同时证书上,还写有一个最重要的:证书编号!我们怎么鉴别这张证书是的真伪呢?只要拿着这个证书编号上相关机构去查,如果证书上的持证人与现实的这个候选人一致,同时证书编号也能对应上,那么就说明这个证书是真实的。

我们的客户端能不能采用这个机制呢?像这样:

 
如果这样来理解HTTPS,一篇就够了!

可是,这个“第三方机构”到底是在哪呢?是一个远端服务?不可能吧?如果是个远端服务,整个交互都会慢了。所以,这个第三方机构的验证功能只能放在客户端的本地了。

12、客户端本地怎么验证证书呢?

客户端本地怎么验证证书呢?答案是证书本身就已经告诉客户端怎么验证证书的真伪。

也就是证书上写着如何根据证书的内容生成证书编号。客户端拿到证书后根据证书上的方法自己生成一个证书编号,如果生成的证书编号与证书上的证书编号相同,那么说明这个证书是真实的。

同时,为避免证书编号本身又被调包,所以使用第三方的私钥进行加密。

这地方有些抽象,我们来个图帮助理解:

 
如果这样来理解HTTPS,一篇就够了!

证书的制作如上图所示。证书中的“编号生成方法MD5”就是告诉客户端:你使用MD5对证书的内容求值就可以得到一个证书编号。

当客户端拿到证书后,开始对证书中的内容进行验证,如果客户端计算出来的证书编号与证书中的证书编号相同,则验证通过:

 
如果这样来理解HTTPS,一篇就够了!

但是第三方机构的公钥怎么跑到了客户端的机器中呢?世界上这么多机器。

其实呢,现实中,浏览器和操作系统都会维护一个权威的第三方机构列表(包括它们的公钥)。因为客户端接收到的证书中会写有颁发机构,客户端就根据这个颁发机构的值在本地找相应的公钥。

题外话:

如果浏览器和操作系统这道防线被破了,就没办法。想想当年自己装过的非常规XP系统,都害怕。

说到这里,想必大家已经知道上文所说的,证书就是HTTPS中数字证书,证书编号就是数字签名,而第三方机构就是指数字证书签发机构(CA)。

13、CA如何颁发数字证书给服务器端的?

当我听到这个问题时,我误以为,我们的SERVER需要发网络请求到CA部门的服务器来拿这个证书。

上一篇:5分钟了解TypeScript


下一篇:P层