Problem 1072: The longest same color grid
Time Limits: 1000 MS Memory Limits: 65536 KB
64-bit interger IO format: %lld Java class name: Main
Description
There are n grid, m kind of color. Grid number 1 to N, color number 1 to M.
The color of each grid is painted in one of the m colors. Now let you remove the Grid does not exceed K, get a new sequence.
Ask you the same color and continuous length of the grid sequence is the length of the number?
Input
The first line of input T, T group data. (T <= 20)
The next line of input three numbers n, m and k. (1 < n, m,k <= 10^5)
The next line of input n number, indicating that the color of each grid. (1 <= a[i] <= m)
Output
For each group of data output the same color and continuous grid sequence length.
Sample Input
1
10 2 2
1 2 1 2 1 1 2 1 1 2
Output for Sample Input
5
Hint
For example we can delete the fourth position and the seventh position
题意:给你一个连续的数字染色序列,你最多可以去掉k个格子使得某些格子变成连续的,比如样例的去掉第二和第四个格子,中间的便有5个1是连续的……
学长出的题,刚看到真的是跪了,1e5的范围知道肯定不能两个for去暴力,想过尺取法,然而只是在原序列上进行尺取,这样并不知道到底删除[L,R]中哪几个点才能得到最大的连续长度。
后来学长说是用vector数组记录每一种颜色所出现的下标,对每一种颜色的vector进行尺取,若设左右游标为L、R,则区间内的元素下标就是 $vector[color][Li……Ri]$,区间总长度(闭区间)为 $vector[color][R]-vector[color][L]+1$,所删除的块为记为 $cnt$个,则可获得 $vector[color][R]-vector[color][L]+1-cnt$,依次对每一个颜色的vector进行尺取更新答案即可
代码:
#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=1e5+7;
int arr[N];
vector<int>vec[N]; void init(int m)
{
for (int i=0; i<=m; ++i)//这里写成 <m 又让我WA了一次,苦逼
vec[i].clear();
}
int main(void)
{
int tcase,n,m,k,i,color;
scanf("%d",&tcase);
while (tcase--)
{
scanf("%d%d%d",&n,&m,&k);
init(m);
for (i=1; i<=n; ++i)
{
scanf("%d",&color);
vec[color].push_back(i-1);
//printf("%d<-%d\n",color,i-1);
}
int ans=1;
for (i=1; i<=m; ++i)
{
if(vec[i].empty())
continue;
int L=0,R=0;
int cnt=0;
int SZ=vec[i].size();
while (L<SZ)
{
while (R<SZ)
{
++R;
if(R>=SZ)
{
--R;
break;
}
//printf("[%d %d]\n",vec[i][R-1],vec[i][R]);
cnt=cnt+vec[i][R]-vec[i][R-1]-1;
if(cnt>k)
{
cnt=cnt-(vec[i][R]-vec[i][R-1]-1);
--R;
break;
}
}
int now=vec[i][R]-vec[i][L]-cnt+1;
if(now>ans)
ans=now;
++L;
if(L>=SZ)
break;
else
cnt=cnt-(vec[i][L]-vec[i][L-1]-1);
}
}
printf("%d\n",ans);
}
return 0;
}