SQL语句的强化

数据库数据 

girls数据库

 1 /*
 2 SQLyog Ultimate v10.00 Beta1
 3 MySQL - 5.7.18-log : Database - girls
 4 *********************************************************************
 5 */
 6 
 7 
 8 /*!40101 SET NAMES utf8 */;
 9 
10 /*!40101 SET SQL_MODE=‘‘*/;
11 
12 /*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
13 /*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
14 /*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE=‘NO_AUTO_VALUE_ON_ZERO‘ */;
15 /*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;
16 CREATE DATABASE /*!32312 IF NOT EXISTS*/`girls` /*!40100 DEFAULT CHARACTER SET utf8 */;
17 
18 USE `girls`;
19 
20 /*Table structure for table `admin` */
21 
22 DROP TABLE IF EXISTS `admin`;
23 
24 CREATE TABLE `admin` (
25   `id` int(11) NOT NULL AUTO_INCREMENT,
26   `username` varchar(10) NOT NULL,
27   `password` varchar(10) NOT NULL,
28   PRIMARY KEY (`id`)
29 ) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8;
30 
31 /*Data for the table `admin` */
32 
33 insert  into `admin`(`id`,`username`,`password`) values (1,john,8888),(2,lyt,6666);
34 
35 /*Table structure for table `beauty` */
36 
37 DROP TABLE IF EXISTS `beauty`;
38 
39 CREATE TABLE `beauty` (
40   `id` int(11) NOT NULL AUTO_INCREMENT,
41   `name` varchar(50) NOT NULL,
42   `sex` char(1) DEFAULT ,
43   `borndate` datetime DEFAULT 1987-01-01 00:00:00,
44   `phone` varchar(11) NOT NULL,
45   `photo` blob,
46   `boyfriend_id` int(11) DEFAULT NULL,
47   PRIMARY KEY (`id`)
48 ) ENGINE=InnoDB AUTO_INCREMENT=13 DEFAULT CHARSET=utf8;
49 
50 /*Data for the table `beauty` */
51 
52 insert  into `beauty`(`id`,`name`,`sex`,`borndate`,`phone`,`photo`,`boyfriend_id`) values (1,柳岩,,1988-02-03 00:00:00,18209876577,NULL,8),(2,苍老师,,1987-12-30 00:00:00,18219876577,NULL,9),(3,Angelababy,,1989-02-03 00:00:00,18209876567,NULL,3),(4,热巴,,1993-02-03 00:00:00,18209876579,NULL,2),(5,周冬雨,,1992-02-03 00:00:00,18209179577,NULL,9),(6,周芷若,,1988-02-03 00:00:00,18209876577,NULL,1),(7,岳灵珊,,1987-12-30 00:00:00,18219876577,NULL,9),(8,小昭,,1989-02-03 00:00:00,18209876567,NULL,1),(9,双儿,,1993-02-03 00:00:00,18209876579,NULL,9),(10,王语嫣,,1992-02-03 00:00:00,18209179577,NULL,4),(11,夏雪,,1993-02-03 00:00:00,18209876579,NULL,9),(12,赵敏,,1992-02-03 00:00:00,18209179577,NULL,1);
53 
54 /*Table structure for table `boys` */
55 
56 DROP TABLE IF EXISTS `boys`;
57 
58 CREATE TABLE `boys` (
59   `id` int(11) NOT NULL AUTO_INCREMENT,
60   `boyName` varchar(20) DEFAULT NULL,
61   `userCP` int(11) DEFAULT NULL,
62   PRIMARY KEY (`id`)
63 ) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8;
64 
65 /*Data for the table `boys` */
66 
67 insert  into `boys`(`id`,`boyName`,`userCP`) values (1,张无忌,100),(2,鹿晗,800),(3,黄晓明,50),(4,段誉,300);
68 
69 /*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
70 /*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;
71 /*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;
72 /*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

myemployees数据库

  1 /*
  2 SQLyog Ultimate v10.00 Beta1
  3 MySQL - 5.5.15 : Database - myemployees
  4 *********************************************************************
  5 */
  6 
  7 
  8 /*!40101 SET NAMES utf8 */;
  9 
 10 /*!40101 SET SQL_MODE=‘‘*/;
 11 
 12 /*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
 13 /*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
 14 /*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE=‘NO_AUTO_VALUE_ON_ZERO‘ */;
 15 /*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;
 16 CREATE DATABASE /*!32312 IF NOT EXISTS*/`myemployees` /*!40100 DEFAULT CHARACTER SET gb2312 */;
 17 
 18 USE `myemployees`;
 19 
 20 /*Table structure for table `departments` */
 21 
 22 DROP TABLE IF EXISTS `departments`;
 23 
 24 CREATE TABLE `departments` (
 25   `department_id` int(4) NOT NULL AUTO_INCREMENT,
 26   `department_name` varchar(3) DEFAULT NULL,
 27   `manager_id` int(6) DEFAULT NULL,
 28   `location_id` int(4) DEFAULT NULL,
 29   PRIMARY KEY (`department_id`),
 30   KEY `loc_id_fk` (`location_id`),
 31   CONSTRAINT `loc_id_fk` FOREIGN KEY (`location_id`) REFERENCES `locations` (`location_id`)
 32 ) ENGINE=InnoDB AUTO_INCREMENT=271 DEFAULT CHARSET=gb2312;
 33 
 34 /*Data for the table `departments` */
 35 
 36 insert  into `departments`(`department_id`,`department_name`,`manager_id`,`location_id`) values (10,Adm,200,1700),(20,Mar,201,1800),(30,Pur,114,1700),(40,Hum,203,2400),(50,Shi,121,1500),(60,IT,103,1400),(70,Pub,204,2700),(80,Sal,145,2500),(90,Exe,100,1700),(100,Fin,108,1700),(110,Acc,205,1700),(120,Tre,NULL,1700),(130,Cor,NULL,1700),(140,Con,NULL,1700),(150,Sha,NULL,1700),(160,Ben,NULL,1700),(170,Man,NULL,1700),(180,Con,NULL,1700),(190,Con,NULL,1700),(200,Ope,NULL,1700),(210,IT ,NULL,1700),(220,NOC,NULL,1700),(230,IT ,NULL,1700),(240,Gov,NULL,1700),(250,Ret,NULL,1700),(260,Rec,NULL,1700),(270,Pay,NULL,1700);
 37 
 38 /*Table structure for table `employees` */
 39 
 40 DROP TABLE IF EXISTS `employees`;
 41 
 42 CREATE TABLE `employees` (
 43   `employee_id` int(6) NOT NULL AUTO_INCREMENT,
 44   `first_name` varchar(20) DEFAULT NULL,
 45   `last_name` varchar(25) DEFAULT NULL,
 46   `email` varchar(25) DEFAULT NULL,
 47   `phone_number` varchar(20) DEFAULT NULL,
 48   `job_id` varchar(10) DEFAULT NULL,
 49   `salary` double(10,2) DEFAULT NULL,
 50   `commission_pct` double(4,2) DEFAULT NULL,
 51   `manager_id` int(6) DEFAULT NULL,
 52   `department_id` int(4) DEFAULT NULL,
 53   `hiredate` datetime DEFAULT NULL,
 54   PRIMARY KEY (`employee_id`),
 55   KEY `dept_id_fk` (`department_id`),
 56   KEY `job_id_fk` (`job_id`),
 57   CONSTRAINT `dept_id_fk` FOREIGN KEY (`department_id`) REFERENCES `departments` (`department_id`),
 58   CONSTRAINT `job_id_fk` FOREIGN KEY (`job_id`) REFERENCES `jobs` (`job_id`)
 59 ) ENGINE=InnoDB AUTO_INCREMENT=207 DEFAULT CHARSET=gb2312;
 60 
 61 /*Data for the table `employees` */
 62 
 63 insert  into `employees`(`employee_id`,`first_name`,`last_name`,`email`,`phone_number`,`job_id`,`salary`,`commission_pct`,`manager_id`,`department_id`,`hiredate`) values (100,Steven,K_ing,SKING,515.123.4567,AD_PRES,24000.00,NULL,NULL,90,1992-04-03 00:00:00),(101,Neena,Kochhar,NKOCHHAR,515.123.4568,AD_VP,17000.00,NULL,100,90,1992-04-03 00:00:00),(102,Lex,De Haan,LDEHAAN,515.123.4569,AD_VP,17000.00,NULL,100,90,1992-04-03 00:00:00),(103,Alexander,Hunold,AHUNOLD,590.423.4567,IT_PROG,9000.00,NULL,102,60,1992-04-03 00:00:00),(104,Bruce,Ernst,BERNST,590.423.4568,IT_PROG,6000.00,NULL,103,60,1992-04-03 00:00:00),(105,David,Austin,DAUSTIN,590.423.4569,IT_PROG,4800.00,NULL,103,60,1998-03-03 00:00:00),(106,Valli,Pataballa,VPATABAL,590.423.4560,IT_PROG,4800.00,NULL,103,60,1998-03-03 00:00:00),(107,Diana,Lorentz,DLORENTZ,590.423.5567,IT_PROG,4200.00,NULL,103,60,1998-03-03 00:00:00),(108,Nancy,Greenberg,NGREENBE,515.124.4569,FI_MGR,12000.00,NULL,101,100,1998-03-03 00:00:00),(109,Daniel,Faviet,DFAVIET,515.124.4169,FI_ACCOUNT,9000.00,NULL,108,100,1998-03-03 00:00:00),(110,John,Chen,JCHEN,515.124.4269,FI_ACCOUNT,8200.00,NULL,108,100,2000-09-09 00:00:00),(111,Ismael,Sciarra,ISCIARRA,515.124.4369,FI_ACCOUNT,7700.00,NULL,108,100,2000-09-09 00:00:00),(112,Jose Manuel,Urman,JMURMAN,515.124.4469,FI_ACCOUNT,7800.00,NULL,108,100,2000-09-09 00:00:00),(113,Luis,Popp,LPOPP,515.124.4567,FI_ACCOUNT,6900.00,NULL,108,100,2000-09-09 00:00:00),(114,Den,Raphaely,DRAPHEAL,515.127.4561,PU_MAN,11000.00,NULL,100,30,2000-09-09 00:00:00),(115,Alexander,Khoo,AKHOO,515.127.4562,PU_CLERK,3100.00,NULL,114,30,2000-09-09 00:00:00),(116,Shelli,Baida,SBAIDA,515.127.4563,PU_CLERK,2900.00,NULL,114,30,2000-09-09 00:00:00),(117,Sigal,Tobias,STOBIAS,515.127.4564,PU_CLERK,2800.00,NULL,114,30,2000-09-09 00:00:00),(118,Guy,Himuro,GHIMURO,515.127.4565,PU_CLERK,2600.00,NULL,114,30,2000-09-09 00:00:00),(119,Karen,Colmenares,KCOLMENA,515.127.4566,PU_CLERK,2500.00,NULL,114,30,2000-09-09 00:00:00),(120,Matthew,Weiss,MWEISS,650.123.1234,ST_MAN,8000.00,NULL,100,50,2004-02-06 00:00:00),(121,Adam,Fripp,AFRIPP,650.123.2234,ST_MAN,8200.00,NULL,100,50,2004-02-06 00:00:00),(122,Payam,Kaufling,PKAUFLIN,650.123.3234,ST_MAN,7900.00,NULL,100,50,2004-02-06 00:00:00),(123,Shanta,Vollman,SVOLLMAN,650.123.4234,ST_MAN,6500.00,NULL,100,50,2004-02-06 00:00:00),(124,Kevin,Mourgos,KMOURGOS,650.123.5234,ST_MAN,5800.00,NULL,100,50,2004-02-06 00:00:00),(125,Julia,Nayer,JNAYER,650.124.1214,ST_CLERK,3200.00,NULL,120,50,2004-02-06 00:00:00),(126,Irene,Mikkilineni,IMIKKILI,650.124.1224,ST_CLERK,2700.00,NULL,120,50,2004-02-06 00:00:00),(127,James,Landry,JLANDRY,650.124.1334,ST_CLERK,2400.00,NULL,120,50,2004-02-06 00:00:00),(128,Steven,Markle,SMARKLE,650.124.1434,ST_CLERK,2200.00,NULL,120,50,2004-02-06 00:00:00),(129,Laura,Bissot,LBISSOT,650.124.5234,ST_CLERK,3300.00,NULL,121,50,2004-02-06 00:00:00),(130,Mozhe,Atkinson,MATKINSO,650.124.6234,ST_CLERK,2800.00,NULL,121,50,2004-02-06 00:00:00),(131,James,Marlow,JAMRLOW,650.124.7234,ST_CLERK,2500.00,NULL,121,50,2004-02-06 00:00:00),(132,TJ,Olson,TJOLSON,650.124.8234,ST_CLERK,2100.00,NULL,121,50,2004-02-06 00:00:00),(133,Jason,Mallin,JMALLIN,650.127.1934,ST_CLERK,3300.00,NULL,122,50,2004-02-06 00:00:00),(134,Michael,Rogers,MROGERS,650.127.1834,ST_CLERK,2900.00,NULL,122,50,2002-12-23 00:00:00),(135,Ki,Gee,KGEE,650.127.1734,ST_CLERK,2400.00,NULL,122,50,2002-12-23 00:00:00),(136,Hazel,Philtanker,HPHILTAN,650.127.1634,ST_CLERK,2200.00,NULL,122,50,2002-12-23 00:00:00),(137,Renske,Ladwig,RLADWIG,650.121.1234,ST_CLERK,3600.00,NULL,123,50,2002-12-23 00:00:00),(138,Stephen,Stiles,SSTILES,650.121.2034,ST_CLERK,3200.00,NULL,123,50,2002-12-23 00:00:00),(139,John,Seo,JSEO,650.121.2019,ST_CLERK,2700.00,NULL,123,50,2002-12-23 00:00:00),(140,Joshua,Patel,JPATEL,650.121.1834,ST_CLERK,2500.00,NULL,123,50,2002-12-23 00:00:00),(141,Trenna,Rajs,TRAJS,650.121.8009,ST_CLERK,3500.00,NULL,124,50,2002-12-23 00:00:00),(142,Curtis,Davies,CDAVIES,650.121.2994,ST_CLERK,3100.00,NULL,124,50,2002-12-23 00:00:00),(143,Randall,Matos,RMATOS,650.121.2874,ST_CLERK,2600.00,NULL,124,50,2002-12-23 00:00:00),(144,Peter,Vargas,PVARGAS,650.121.2004,ST_CLERK,2500.00,NULL,124,50,2002-12-23 00:00:00),(145,John,Russell,JRUSSEL,011.44.1344.429268,SA_MAN,14000.00,0.40,100,80,2002-12-23 00:00:00),(146,Karen,Partners,KPARTNER,011.44.1344.467268,SA_MAN,13500.00,0.30,100,80,2002-12-23 00:00:00),(147,Alberto,Errazuriz,AERRAZUR,011.44.1344.429278,SA_MAN,12000.00,0.30,100,80,2002-12-23 00:00:00),(148,Gerald,Cambrault,GCAMBRAU,011.44.1344.619268,SA_MAN,11000.00,0.30,100,80,2002-12-23 00:00:00),(149,Eleni,Zlotkey,EZLOTKEY,011.44.1344.429018,SA_MAN,10500.00,0.20,100,80,2002-12-23 00:00:00),(150,Peter,Tucker,PTUCKER,011.44.1344.129268,SA_REP,10000.00,0.30,145,80,2014-03-05 00:00:00),(151,David,Bernstein,DBERNSTE,011.44.1344.345268,SA_REP,9500.00,0.25,145,80,2014-03-05 00:00:00),(152,Peter,Hall,PHALL,011.44.1344.478968,SA_REP,9000.00,0.25,145,80,2014-03-05 00:00:00),(153,Christopher,Olsen,COLSEN,011.44.1344.498718,SA_REP,8000.00,0.20,145,80,2014-03-05 00:00:00),(154,Nanette,Cambrault,NCAMBRAU,011.44.1344.987668,SA_REP,7500.00,0.20,145,80,2014-03-05 00:00:00),(155,Oliver,Tuvault,OTUVAULT,011.44.1344.486508,SA_REP,7000.00,0.15,145,80,2014-03-05 00:00:00),(156,Janette,K_ing,JKING,011.44.1345.429268,SA_REP,10000.00,0.35,146,80,2014-03-05 00:00:00),(157,Patrick,Sully,PSULLY,011.44.1345.929268,SA_REP,9500.00,0.35,146,80,2014-03-05 00:00:00),(158,Allan,McEwen,AMCEWEN,011.44.1345.829268,SA_REP,9000.00,0.35,146,80,2014-03-05 00:00:00),(159,Lindsey,Smith,LSMITH,011.44.1345.729268,SA_REP,8000.00,0.30,146,80,2014-03-05 00:00:00),(160,Louise,Doran,LDORAN,011.44.1345.629268,SA_REP,7500.00,0.30,146,80,2014-03-05 00:00:00),(161,Sarath,Sewall,SSEWALL,011.44.1345.529268,SA_REP,7000.00,0.25,146,80,2014-03-05 00:00:00),(162,Clara,Vishney,CVISHNEY,011.44.1346.129268,SA_REP,10500.00,0.25,147,80,2014-03-05 00:00:00),(163,Danielle,Greene,DGREENE,011.44.1346.229268,SA_REP,9500.00,0.15,147,80,2014-03-05 00:00:00),(164,Mattea,Marvins,MMARVINS,011.44.1346.329268,SA_REP,7200.00,0.10,147,80,2014-03-05 00:00:00),(165,David,Lee,DLEE,011.44.1346.529268,SA_REP,6800.00,0.10,147,80,2014-03-05 00:00:00),(166,Sundar,Ande,SANDE,011.44.1346.629268,SA_REP,6400.00,0.10,147,80,2014-03-05 00:00:00),(167,Amit,Banda,ABANDA,011.44.1346.729268,SA_REP,6200.00,0.10,147,80,2014-03-05 00:00:00),(168,Lisa,Ozer,LOZER,011.44.1343.929268,SA_REP,11500.00,0.25,148,80,2014-03-05 00:00:00),(169,Harrison,Bloom,HBLOOM,011.44.1343.829268,SA_REP,10000.00,0.20,148,80,2014-03-05 00:00:00),(170,Tayler,Fox,TFOX,011.44.1343.729268,SA_REP,9600.00,0.20,148,80,2014-03-05 00:00:00),(171,William,Smith,WSMITH,011.44.1343.629268,SA_REP,7400.00,0.15,148,80,2014-03-05 00:00:00),(172,Elizabeth,Bates,EBATES,011.44.1343.529268,SA_REP,7300.00,0.15,148,80,2014-03-05 00:00:00),(173,Sundita,Kumar,SKUMAR,011.44.1343.329268,SA_REP,6100.00,0.10,148,80,2014-03-05 00:00:00),(174,Ellen,Abel,EABEL,011.44.1644.429267,SA_REP,11000.00,0.30,149,80,2014-03-05 00:00:00),(175,Alyssa,Hutton,AHUTTON,011.44.1644.429266,SA_REP,8800.00,0.25,149,80,2014-03-05 00:00:00),(176,Jonathon,Taylor,JTAYLOR,011.44.1644.429265,SA_REP,8600.00,0.20,149,80,2014-03-05 00:00:00),(177,Jack,Livingston,JLIVINGS,011.44.1644.429264,SA_REP,8400.00,0.20,149,80,2014-03-05 00:00:00),(178,Kimberely,Grant,KGRANT,011.44.1644.429263,SA_REP,7000.00,0.15,149,NULL,2014-03-05 00:00:00),(179,Charles,Johnson,CJOHNSON,011.44.1644.429262,SA_REP,6200.00,0.10,149,80,2014-03-05 00:00:00),(180,Winston,Taylor,WTAYLOR,650.507.9876,SH_CLERK,3200.00,NULL,120,50,2014-03-05 00:00:00),(181,Jean,Fleaur,JFLEAUR,650.507.9877,SH_CLERK,3100.00,NULL,120,50,2014-03-05 00:00:00),(182,Martha,Sullivan,MSULLIVA,650.507.9878,SH_CLERK,2500.00,NULL,120,50,2014-03-05 00:00:00),(183,Girard,Geoni,GGEONI,650.507.9879,SH_CLERK,2800.00,NULL,120,50,2014-03-05 00:00:00),(184,Nandita,Sarchand,NSARCHAN,650.509.1876,SH_CLERK,4200.00,NULL,121,50,2014-03-05 00:00:00),(185,Alexis,Bull,ABULL,650.509.2876,SH_CLERK,4100.00,NULL,121,50,2014-03-05 00:00:00),(186,Julia,Dellinger,JDELLING,650.509.3876,SH_CLERK,3400.00,NULL,121,50,2014-03-05 00:00:00),(187,Anthony,Cabrio,ACABRIO,650.509.4876,SH_CLERK,3000.00,NULL,121,50,2014-03-05 00:00:00),(188,Kelly,Chung,KCHUNG,650.505.1876,SH_CLERK,3800.00,NULL,122,50,2014-03-05 00:00:00),(189,Jennifer,Dilly,JDILLY,650.505.2876,SH_CLERK,3600.00,NULL,122,50,2014-03-05 00:00:00),(190,Timothy,Gates,TGATES,650.505.3876,SH_CLERK,2900.00,NULL,122,50,2014-03-05 00:00:00),(191,Randall,Perkins,RPERKINS,650.505.4876,SH_CLERK,2500.00,NULL,122,50,2014-03-05 00:00:00),(192,Sarah,Bell,SBELL,650.501.1876,SH_CLERK,4000.00,NULL,123,50,2014-03-05 00:00:00),(193,Britney,Everett,BEVERETT,650.501.2876,SH_CLERK,3900.00,NULL,123,50,2014-03-05 00:00:00),(194,Samuel,McCain,SMCCAIN,650.501.3876,SH_CLERK,3200.00,NULL,123,50,2014-03-05 00:00:00),(195,Vance,Jones,VJONES,650.501.4876,SH_CLERK,2800.00,NULL,123,50,2014-03-05 00:00:00),(196,Alana,Walsh,AWALSH,650.507.9811,SH_CLERK,3100.00,NULL,124,50,2014-03-05 00:00:00),(197,Kevin,Feeney,KFEENEY,650.507.9822,SH_CLERK,3000.00,NULL,124,50,2014-03-05 00:00:00),(198,Donald,OConnell,DOCONNEL,650.507.9833,SH_CLERK,2600.00,NULL,124,50,2014-03-05 00:00:00),(199,Douglas,Grant,DGRANT,650.507.9844,SH_CLERK,2600.00,NULL,124,50,2014-03-05 00:00:00),(200,Jennifer,Whalen,JWHALEN,515.123.4444,AD_ASST,4400.00,NULL,101,10,2016-03-03 00:00:00),(201,Michael,Hartstein,MHARTSTE,515.123.5555,MK_MAN,13000.00,NULL,100,20,2016-03-03 00:00:00),(202,Pat,Fay,PFAY,603.123.6666,MK_REP,6000.00,NULL,201,20,2016-03-03 00:00:00),(203,Susan,Mavris,SMAVRIS,515.123.7777,HR_REP,6500.00,NULL,101,40,2016-03-03 00:00:00),(204,Hermann,Baer,HBAER,515.123.8888,PR_REP,10000.00,NULL,101,70,2016-03-03 00:00:00),(205,Shelley,Higgins,SHIGGINS,515.123.8080,AC_MGR,12000.00,NULL,101,110,2016-03-03 00:00:00),(206,William,Gietz,WGIETZ,515.123.8181,AC_ACCOUNT,8300.00,NULL,205,110,2016-03-03 00:00:00);
 64 
 65 /*Table structure for table `jobs` */
 66 
 67 DROP TABLE IF EXISTS `jobs`;
 68 
 69 CREATE TABLE `jobs` (
 70   `job_id` varchar(10) NOT NULL,
 71   `job_title` varchar(35) DEFAULT NULL,
 72   `min_salary` int(6) DEFAULT NULL,
 73   `max_salary` int(6) DEFAULT NULL,
 74   PRIMARY KEY (`job_id`)
 75 ) ENGINE=InnoDB DEFAULT CHARSET=gb2312;
 76 
 77 /*Data for the table `jobs` */
 78 
 79 insert  into `jobs`(`job_id`,`job_title`,`min_salary`,`max_salary`) values (AC_ACCOUNT,Public Accountant,4200,9000),(AC_MGR,Accounting Manager,8200,16000),(AD_ASST,Administration Assistant,3000,6000),(AD_PRES,President,20000,40000),(AD_VP,Administration Vice President,15000,30000),(FI_ACCOUNT,Accountant,4200,9000),(FI_MGR,Finance Manager,8200,16000),(HR_REP,Human Resources Representative,4000,9000),(IT_PROG,Programmer,4000,10000),(MK_MAN,Marketing Manager,9000,15000),(MK_REP,Marketing Representative,4000,9000),(PR_REP,Public Relations Representative,4500,10500),(PU_CLERK,Purchasing Clerk,2500,5500),(PU_MAN,Purchasing Manager,8000,15000),(SA_MAN,Sales Manager,10000,20000),(SA_REP,Sales Representative,6000,12000),(SH_CLERK,Shipping Clerk,2500,5500),(ST_CLERK,Stock Clerk,2000,5000),(ST_MAN,Stock Manager,5500,8500);
 80 
 81 /*Table structure for table `locations` */
 82 
 83 DROP TABLE IF EXISTS `locations`;
 84 
 85 CREATE TABLE `locations` (
 86   `location_id` int(11) NOT NULL AUTO_INCREMENT,
 87   `street_address` varchar(40) DEFAULT NULL,
 88   `postal_code` varchar(12) DEFAULT NULL,
 89   `city` varchar(30) DEFAULT NULL,
 90   `state_province` varchar(25) DEFAULT NULL,
 91   `country_id` varchar(2) DEFAULT NULL,
 92   PRIMARY KEY (`location_id`)
 93 ) ENGINE=InnoDB AUTO_INCREMENT=3201 DEFAULT CHARSET=gb2312;
 94 
 95 /*Data for the table `locations` */
 96 
 97 insert  into `locations`(`location_id`,`street_address`,`postal_code`,`city`,`state_province`,`country_id`) values (1000,1297 Via Cola di Rie,00989,Roma,NULL,IT),(1100,93091 Calle della Testa,10934,Venice,NULL,IT),(1200,2017 Shinjuku-ku,1689,Tokyo,Tokyo Prefecture,JP),(1300,9450 Kamiya-cho,6823,Hiroshima,NULL,JP),(1400,2014 Jabberwocky Rd,26192,Southlake,Texas,US),(1500,2011 Interiors Blvd,99236,South San Francisco,California,US),(1600,2007 Zagora St,50090,South Brunswick,New Jersey,US),(1700,2004 Charade Rd,98199,Seattle,Washington,US),(1800,147 Spadina Ave,M5V 2L7,Toronto,Ontario,CA),(1900,6092 Boxwood St,YSW 9T2,Whitehorse,Yukon,CA),(2000,40-5-12 Laogianggen,190518,Beijing,NULL,CN),(2100,1298 Vileparle (E),490231,Bombay,Maharashtra,IN),(2200,12-98 Victoria Street,2901,Sydney,New South Wales,AU),(2300,198 Clementi North,540198,Singapore,NULL,SG),(2400,8204 Arthur St,NULL,London,NULL,UK),(2500,Magdalen Centre, The Oxford Science Park,OX9 9ZB,Oxford,Oxford,UK),(2600,9702 Chester Road,09629850293,Stretford,Manchester,UK),(2700,Schwanthalerstr. 7031,80925,Munich,Bavaria,DE),(2800,Rua Frei Caneca 1360 ,01307-002,Sao Paulo,Sao Paulo,BR),(2900,20 Rue des Corps-Saints,1730,Geneva,Geneve,CH),(3000,Murtenstrasse 921,3095,Bern,BE,CH),(3100,Pieter Breughelstraat 837,3029SK,Utrecht,Utrecht,NL),(3200,Mariano Escobedo 9991,11932,Mexico City,Distrito Federal,,MX);
 98 
 99 /*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
100 /*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;
101 /*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;
102 /*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

 基础查询

 1 # 基础查询DQL data query language
 2 /*
 3 特点:
 4 1.查询列表可以是:表中的字段、常量值、表达式、函数
 5 2.查询的结果是一张虚拟表
 6 */
 7 
 8 USE myemployees;
 9 # 1.查询单个字段
10 SELECT last_name FROM employees;
11 # 2.查询表中多个字段
12 SELECT last_name, email FROM employees;
13 # 3.查询表中所有字段
14 SELECT * FROM employees;
15 # 4.查询表中所有字段方式2  着重号区分字段与关键字
16 SELECT
17     `first_name`,
18     `last_name`,
19     `email`,
20     `salary` 
21 FROM
22     employees;
23     
24 # 5.查询常量值
25 SELECT 100;
26 
27 # 6.查询表达式
28 SELECT 100*98
29 
30 # 7.查询函数
31 SELECT VERSION();
32 
33 
34 
35 # 8. 起别名
36 # 方式1
37 SELECT 100*98 AS 结果;
38 SELECT last_name AS 姓, first_name ASFROM employees;
39 
40 # 方式2
41 SELECT last_name 姓,first_name 名 FROM employees;
42 
43 # 方式3 区分与关键字发生冲突 加双引号
44 SELECT last_name "OUT put" FROM employees
45 
46 
47 # 9.去重
48 SELECT DISTINCT department_id FROM employees;
49 
50 # 10.连接符
51 SELECT CONCAT(first_name, " ", last_name) AS 姓名 FROM employees;
52 
53 
54 # 11.IFNULL(expr1,expr2)的使用
55 SELECT CONCAT(last_name, first_name, IFNULL(commission_pct, 0)) FROM employees;

条件查询

 1 # 一. 按照条件表达式查询
 2 
 3 # 1.查询出工资大于12000的员工信息
 4 
 5 SELECT
 6     * 
 7 FROM
 8     employees 
 9 WHERE
10     salary > 12000;
11     
12 # 2.查询出员工编号不等于90的员工名字与部门编号
13 SELECT last_name, department_id FROM employees WHERE department_id != 90;
14 
15 
16 # 二.按照逻辑表达式查询
17 # 1. 查询工资在10000-20000的员工名,工资,奖金
18 SELECT last_name, salary, commission_pct FROM employees WHERE salary>10000 AND salary<20000;
19 
20 
21 # 三、模糊查询

常见函数

 1 # 1.流程控制函数 IF(expr1,expr2,expr3)函数
 2 # 2.流程控制函数 case函数 后面跟字段或表达式   或者都不跟  单行函数
 3 SELECT
 4     salary 原工资,
 5     department_id,
 6 CASE
 7         department_id 
 8         WHEN 30 THEN
 9         salary * 1.1 
10         WHEN 40 THEN
11         salary * 1.2 
12         WHEN 50 THEN
13         salary * 1.3 ELSE salary 
14     END AS 新工资 
15 FROM
16     employees;
17     
18     
19 SELECT
20     salary,
21 CASE
22         
23         WHEN salary > 20000 THEN
24         A 
25         WHEN salary > 15000 THEN
26         B 
27         WHEN salary > 10000 THEN
28         C ELSE D 
29     END AS 工资级别 
30 FROM
31     employees;

分组查询

 1 # GROUP BY
 2 -- 查询每个工种的最高工资
 3 -- 语法: 分组函数 列 表 分组 字段
 4 SELECT
 5     MAX( salary ),
 6     job_id 
 7 FROM
 8     employees 
 9 GROUP BY
10     job_id;
11     
12     
13 -- 查询每个位置上的部门个数
14 SELECT COUNT(*), location_id FROM departments GROUP BY location_id;
15 
16 
17 -- 查询邮箱中包含a字符的,每个部门的平均工资
18 SELECT
19     AVG( salary ),
20     department_id,
21     email 
22 FROM
23     employees 
24 WHERE
25     email LIKE %a% 
26 GROUP BY
27     department_id;
28     
29 -- 查询有奖金的每个领导员工的最高工资
30 SELECT MAX(salary), manager_id FROM employees WHERE commission_pct IS NOT NULL GROUP BY manager_id;
31 
32 --  查询哪个部门的员工个数大于2  添加分组后的刷选
33 # 1.首先查出每个部门员工的个数
34 SELECT COUNT(*),  department_id FROM employees GROUP BY department_id;
35 # 2.再在新临时表后加筛选
36 SELECT COUNT(*),  department_id FROM employees GROUP BY department_id HAVING COUNT(*) > 2;
37 
38 
39 -- 查询每个工种有奖金的员工的最高工资大于12000的工种编号和最高工资;
40 -- 1.查询每个工种有奖金的员工的最高工资 
41 SELECT MAX(salary), job_id FROM employees WHERE commission_pct IS NOT NULL GROUP BY job_id;
42 -- 2.在1之后的结果再加条件
43 SELECT
44     MAX( salary ) AS 最高工资,
45     job_id 
46 FROM
47     employees 
48 WHERE
49     commission_pct IS NOT NULL 
50 GROUP BY
51     job_id 
52 HAVING
53     最高工资 > 12000;
54     
55     
56 -- 查询领导编号大于102的每个领导手下的最低工资大于5000的领导编号是哪个 以及最低工资    
57 
58 SELECT
59     MIN( salary ),
60     manager_id 
61 FROM
62     employees 
63 WHERE
64     manager_id > 102 
65 GROUP BY
66     manager_id 
67 HAVING
68     MIN( salary )> 5000;

分组函数

 1 # 分组函数  统计作用
 2 -- SUM AVG处理数字型  
 3 -- MIN MAX COUNT可以处理任何类型 日期 字符都行
 4 
 5 SELECT SUM(salary) 和, ROUND(AVG(salary), 2) 平均, MIN(salary) 最小, MAX(salary) 最大, COUNT(salary) 个数 FROM employees;
 6 
 7 -- 和distinct搭配使用
 8 SELECT SUM(DISTINCT(salary)), SUM(salary) FROM employees;
 9 
10 -- count的详细使用
11 
12 SELECT COUNT(salary) FROM employees;
13 
14 -- 统计行数  效率稍微比上边高点
15 SELECT COUNT(1) FROM employees;
16 SELECT COUNT(*) FROM employees; # 这种情况用的比较多

连接查询

  1 # SQL92
  2 #   连接查询 多张表查询
  3 USE girls;
  4 -- 笛卡尔积乘积现象
  5 SELECT NAME, boyname FROM beauty, boys;  #没有条件去约束
  6 
  7 
  8 # 1.等值连接
  9 SELECT NAME
 10     ,
 11     boyname 
 12 FROM
 13     beauty,
 14     boys 
 15 WHERE
 16     beauty.boyfriend_id = boys.id;
 17 
 18 -- 查询员工对应的部门
 19 USE myemployees;
 20 SELECT
 21     last_name,
 22     department_name 
 23 FROM
 24     employees,
 25     departments 
 26 WHERE
 27     employees.department_id = departments.department_id;
 28     
 29     
 30 -- 查询员工名 工种号 工种名
 31 SELECT
 32     last_name,
 33     employees.job_id,
 34     job_title 
 35 FROM
 36     employees,
 37     jobs 
 38 WHERE
 39     employees.job_id = jobs.job_id;
 40     
 41 SELECT
 42     last_name,
 43     e.job_id,
 44     job_title 
 45 FROM
 46     employees e,
 47     jobs j 
 48 WHERE
 49     e.job_id = j.job_id;
 50     
 51 
 52 -- 可以加筛选 分组group by 分组后筛选having 排序order by
 53 -- 查询城市名第二个字符为o的部门名以及城市名
 54 SELECT
 55     department_name,
 56     city 
 57 FROM
 58     departments,
 59     locations 
 60 WHERE
 61     locations.location_id = departments.location_id 
 62     AND city LIKE _o%;
 63     
 64     
 65 -- 非等值连接  与等值连接一样可以加分组 排序等条件
 66 CREATE TABLE job_grades(
 67 grade_level VARCHAR(3),
 68 lowest_sal INT,
 69 highest_sal INT
 70 );
 71 
 72 INSERT INTO job_grades(grade_level, lowest_sal, highest_sal) VALUES
 73 ("A", 1000, 2999),
 74 ("B", 3000, 5999),
 75 ("C", 6000, 9999),
 76 ("D", 10000, 14999),
 77 ("E", 15000, 24999),
 78 ("F", 25000, 40000);
 79 
 80 # 查询员工的工资以及对应的级别
 81 SELECT
 82     salary,
 83     grade_level 
 84 FROM
 85     employees e,
 86     job_grades g 
 87 WHERE
 88     salary BETWEEN g.lowest_sal 
 89     AND g.highest_sal;
 90     
 91 -- 自连接
 92 -- 查询员工名与上级名
 93 SELECT last_name, manager_id, employee_id FROM employees;
 94 SELECT
 95     e.employee_id,
 96     e.last_name,
 97     m.last_name, 
 98     m.employee_id 
 99 FROM
100     employees e,
101     employees m 
102 WHERE
103     e.manager_id = m.employee_id;
104       

SQL99语法连接

  1 # SQL99语法
  2 /*
  3 -- 格式:
  4 SELECT 查询列表
  5 FROM 表1 别名 连接类型
  6 JOIN 表2 别名
  7 ON                 连接条件
  8 WHERE         筛选条件
  9 GROUP BY  分组
 10 HAVING         筛选条件
 11 ORDER BY  排序列表
 12 
 13 
 14 分类
 15 内连接: INNER JOIN  等值 非等值 自连接
 16 外连接
 17         左外 LEFT OUTER
 18         右外 RIGHT OUTER
 19         全外 FULL OUTER
 20 交叉连接 cross
 21 
 22 内连接
 23 语法:
 24 SELECT 查询列表
 25 FROM 表1 别名
 26 INNER JOIN 表2 别名
 27 ON 连接条件
 28 */
 29 
 30 #1. 等值连接
 31 # 案例1: 查询员工名、部门名
 32 SELECT
 33     last_name,
 34     department_name 
 35 FROM
 36     employees e
 37     INNER JOIN departments d ON e.department_id = d.department_id;
 38     
 39 # 案例2 查询名字中包含e的员工名和工种名
 40 SELECT 
 41     last_name,
 42     job_title
 43 FROM 
 44     employees e
 45 INNER JOIN jobs j
 46 ON e.job_id = j.job_id
 47 WHERE e.last_name LIKE %e%;
 48 
 49 # 案例3 查询部门个数大于3的城市名与部门个数
 50 # 案例4 查询哪个部门的员工个数>3的部门名和员工个数,并按照个数排序(降序)
 51 SELECT department_name, COUNT(*) 个数 FROM employees e INNER JOIN departments d ON e.department_id = d.department_id
 52 GROUP BY department_name
 53 HAVING COUNT(*) > 3 
 54 ORDER BY COUNT(*) DESC;
 55 
 56 # 案例5查询员工名 部门名 工种名 并按照部门名降序
 57 SELECT
 58     last_name,
 59     department_name,
 60     job_title 
 61 FROM
 62     employees e
 63     INNER JOIN departments d ON e.employee_id = d.department_id
 64     INNER JOIN jobs j ON e.job_id = j.job_id 
 65 ORDER BY
 66     department_name DESC;
 67     
 68     
 69 # 2.非等值连接
 70 # 查询员工的工资级别
 71 SELECT
 72     salary,
 73     grade_level 
 74 FROM
 75     employees e
 76     JOIN job_grades j ON e.salary BETWEEN j.lowest_sal 
 77     AND j.highest_sal;
 78     
 79 # 查询员工的工资级别个数大于20的个数并且已工资级别降序
 80 SELECT
 81     COUNT(*),
 82     grade_level 
 83 FROM
 84     employees e
 85     JOIN job_grades j ON e.salary BETWEEN j.lowest_sal 
 86     AND j.highest_sal 
 87 GROUP BY
 88     grade_level 
 89 HAVING
 90     COUNT(*) > 20 
 91 ORDER BY
 92     grade_level DESC;
 93     
 94 # 3 自连接
 95 # 查询姓名中包含字符K的员工的名字 上级的名字 其中inner可以省掉
 96 SELECT e.last_name, m.last_name
 97 FROM employees e
 98 INNER JOIN employees m
 99 ON e.manager_id = m.employee_id
100 WHERE e.last_name LIKE %k%;
101 
102 
103 -- 二 外连接
104 # 外连接应用场景就是一张表关联另外一张表里边没有的数据
105 # 左外连接 left JOIN左边的是主表
106 # 右外连接 right JOIN 右边的是主表
107 # 左外 与 右外 交换两张表的顺序 最终的结果是一样的
108 # 查询男朋友不在男神表中的女神名字
109 USE girls;
110 # 左外连接
111 SELECT
112     b.NAME,
113     bo.* 
114 FROM
115     beauty b
116     LEFT OUTER JOIN boys bo ON b.boyfriend_id = bo.id 
117 WHERE
118     bo.id IS NULL;
119 # 右外连接
120 SELECT
121     b.NAME,
122     bo.* 
123 FROM
124     boys bo
125     RIGHT OUTER JOIN beauty b ON b.boyfriend_id = bo.id 
126 WHERE
127     bo.id IS NULL;
128     
129 # 全外连接
130 # 全外连接的结果就是相当于内连接的结果+表1中有的但表2中没有+表2中有的但表1中没有
131 -- FULL OUTER JOIN  在mysql中是不支持全外连接的
132 SELECT
133     b.NAME,
134     bo.* 
135 FROM
136     boys bo
137     FULL OUTER JOIN beauty b ON b.boyfriend_id = bo.id 
138 WHERE
139     bo.id IS NULL;
140 
141 # 交叉连接
142 -- CROSS JOIN
143 SELECT b.*,bo.* FROM beauty b CROSS JOIN boys bo;
144 
145    

 

SQL语句的强化

上一篇:解决windows 下mysql 表名自动转成小写的问题


下一篇:SqlAgent备份脚本