数据库数据
girls数据库
1 /* 2 SQLyog Ultimate v10.00 Beta1 3 MySQL - 5.7.18-log : Database - girls 4 ********************************************************************* 5 */ 6 7 8 /*!40101 SET NAMES utf8 */; 9 10 /*!40101 SET SQL_MODE=‘‘*/; 11 12 /*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */; 13 /*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */; 14 /*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE=‘NO_AUTO_VALUE_ON_ZERO‘ */; 15 /*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */; 16 CREATE DATABASE /*!32312 IF NOT EXISTS*/`girls` /*!40100 DEFAULT CHARACTER SET utf8 */; 17 18 USE `girls`; 19 20 /*Table structure for table `admin` */ 21 22 DROP TABLE IF EXISTS `admin`; 23 24 CREATE TABLE `admin` ( 25 `id` int(11) NOT NULL AUTO_INCREMENT, 26 `username` varchar(10) NOT NULL, 27 `password` varchar(10) NOT NULL, 28 PRIMARY KEY (`id`) 29 ) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8; 30 31 /*Data for the table `admin` */ 32 33 insert into `admin`(`id`,`username`,`password`) values (1,‘john‘,‘8888‘),(2,‘lyt‘,‘6666‘); 34 35 /*Table structure for table `beauty` */ 36 37 DROP TABLE IF EXISTS `beauty`; 38 39 CREATE TABLE `beauty` ( 40 `id` int(11) NOT NULL AUTO_INCREMENT, 41 `name` varchar(50) NOT NULL, 42 `sex` char(1) DEFAULT ‘女‘, 43 `borndate` datetime DEFAULT ‘1987-01-01 00:00:00‘, 44 `phone` varchar(11) NOT NULL, 45 `photo` blob, 46 `boyfriend_id` int(11) DEFAULT NULL, 47 PRIMARY KEY (`id`) 48 ) ENGINE=InnoDB AUTO_INCREMENT=13 DEFAULT CHARSET=utf8; 49 50 /*Data for the table `beauty` */ 51 52 insert into `beauty`(`id`,`name`,`sex`,`borndate`,`phone`,`photo`,`boyfriend_id`) values (1,‘柳岩‘,‘女‘,‘1988-02-03 00:00:00‘,‘18209876577‘,NULL,8),(2,‘苍老师‘,‘女‘,‘1987-12-30 00:00:00‘,‘18219876577‘,NULL,9),(3,‘Angelababy‘,‘女‘,‘1989-02-03 00:00:00‘,‘18209876567‘,NULL,3),(4,‘热巴‘,‘女‘,‘1993-02-03 00:00:00‘,‘18209876579‘,NULL,2),(5,‘周冬雨‘,‘女‘,‘1992-02-03 00:00:00‘,‘18209179577‘,NULL,9),(6,‘周芷若‘,‘女‘,‘1988-02-03 00:00:00‘,‘18209876577‘,NULL,1),(7,‘岳灵珊‘,‘女‘,‘1987-12-30 00:00:00‘,‘18219876577‘,NULL,9),(8,‘小昭‘,‘女‘,‘1989-02-03 00:00:00‘,‘18209876567‘,NULL,1),(9,‘双儿‘,‘女‘,‘1993-02-03 00:00:00‘,‘18209876579‘,NULL,9),(10,‘王语嫣‘,‘女‘,‘1992-02-03 00:00:00‘,‘18209179577‘,NULL,4),(11,‘夏雪‘,‘女‘,‘1993-02-03 00:00:00‘,‘18209876579‘,NULL,9),(12,‘赵敏‘,‘女‘,‘1992-02-03 00:00:00‘,‘18209179577‘,NULL,1); 53 54 /*Table structure for table `boys` */ 55 56 DROP TABLE IF EXISTS `boys`; 57 58 CREATE TABLE `boys` ( 59 `id` int(11) NOT NULL AUTO_INCREMENT, 60 `boyName` varchar(20) DEFAULT NULL, 61 `userCP` int(11) DEFAULT NULL, 62 PRIMARY KEY (`id`) 63 ) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8; 64 65 /*Data for the table `boys` */ 66 67 insert into `boys`(`id`,`boyName`,`userCP`) values (1,‘张无忌‘,100),(2,‘鹿晗‘,800),(3,‘黄晓明‘,50),(4,‘段誉‘,300); 68 69 /*!40101 SET SQL_MODE=@OLD_SQL_MODE */; 70 /*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */; 71 /*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */; 72 /*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;
myemployees数据库
1 /* 2 SQLyog Ultimate v10.00 Beta1 3 MySQL - 5.5.15 : Database - myemployees 4 ********************************************************************* 5 */ 6 7 8 /*!40101 SET NAMES utf8 */; 9 10 /*!40101 SET SQL_MODE=‘‘*/; 11 12 /*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */; 13 /*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */; 14 /*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE=‘NO_AUTO_VALUE_ON_ZERO‘ */; 15 /*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */; 16 CREATE DATABASE /*!32312 IF NOT EXISTS*/`myemployees` /*!40100 DEFAULT CHARACTER SET gb2312 */; 17 18 USE `myemployees`; 19 20 /*Table structure for table `departments` */ 21 22 DROP TABLE IF EXISTS `departments`; 23 24 CREATE TABLE `departments` ( 25 `department_id` int(4) NOT NULL AUTO_INCREMENT, 26 `department_name` varchar(3) DEFAULT NULL, 27 `manager_id` int(6) DEFAULT NULL, 28 `location_id` int(4) DEFAULT NULL, 29 PRIMARY KEY (`department_id`), 30 KEY `loc_id_fk` (`location_id`), 31 CONSTRAINT `loc_id_fk` FOREIGN KEY (`location_id`) REFERENCES `locations` (`location_id`) 32 ) ENGINE=InnoDB AUTO_INCREMENT=271 DEFAULT CHARSET=gb2312; 33 34 /*Data for the table `departments` */ 35 36 insert into `departments`(`department_id`,`department_name`,`manager_id`,`location_id`) values (10,‘Adm‘,200,1700),(20,‘Mar‘,201,1800),(30,‘Pur‘,114,1700),(40,‘Hum‘,203,2400),(50,‘Shi‘,121,1500),(60,‘IT‘,103,1400),(70,‘Pub‘,204,2700),(80,‘Sal‘,145,2500),(90,‘Exe‘,100,1700),(100,‘Fin‘,108,1700),(110,‘Acc‘,205,1700),(120,‘Tre‘,NULL,1700),(130,‘Cor‘,NULL,1700),(140,‘Con‘,NULL,1700),(150,‘Sha‘,NULL,1700),(160,‘Ben‘,NULL,1700),(170,‘Man‘,NULL,1700),(180,‘Con‘,NULL,1700),(190,‘Con‘,NULL,1700),(200,‘Ope‘,NULL,1700),(210,‘IT ‘,NULL,1700),(220,‘NOC‘,NULL,1700),(230,‘IT ‘,NULL,1700),(240,‘Gov‘,NULL,1700),(250,‘Ret‘,NULL,1700),(260,‘Rec‘,NULL,1700),(270,‘Pay‘,NULL,1700); 37 38 /*Table structure for table `employees` */ 39 40 DROP TABLE IF EXISTS `employees`; 41 42 CREATE TABLE `employees` ( 43 `employee_id` int(6) NOT NULL AUTO_INCREMENT, 44 `first_name` varchar(20) DEFAULT NULL, 45 `last_name` varchar(25) DEFAULT NULL, 46 `email` varchar(25) DEFAULT NULL, 47 `phone_number` varchar(20) DEFAULT NULL, 48 `job_id` varchar(10) DEFAULT NULL, 49 `salary` double(10,2) DEFAULT NULL, 50 `commission_pct` double(4,2) DEFAULT NULL, 51 `manager_id` int(6) DEFAULT NULL, 52 `department_id` int(4) DEFAULT NULL, 53 `hiredate` datetime DEFAULT NULL, 54 PRIMARY KEY (`employee_id`), 55 KEY `dept_id_fk` (`department_id`), 56 KEY `job_id_fk` (`job_id`), 57 CONSTRAINT `dept_id_fk` FOREIGN KEY (`department_id`) REFERENCES `departments` (`department_id`), 58 CONSTRAINT `job_id_fk` FOREIGN KEY (`job_id`) REFERENCES `jobs` (`job_id`) 59 ) ENGINE=InnoDB AUTO_INCREMENT=207 DEFAULT CHARSET=gb2312; 60 61 /*Data for the table `employees` */ 62 63 insert into `employees`(`employee_id`,`first_name`,`last_name`,`email`,`phone_number`,`job_id`,`salary`,`commission_pct`,`manager_id`,`department_id`,`hiredate`) values (100,‘Steven‘,‘K_ing‘,‘SKING‘,‘515.123.4567‘,‘AD_PRES‘,24000.00,NULL,NULL,90,‘1992-04-03 00:00:00‘),(101,‘Neena‘,‘Kochhar‘,‘NKOCHHAR‘,‘515.123.4568‘,‘AD_VP‘,17000.00,NULL,100,90,‘1992-04-03 00:00:00‘),(102,‘Lex‘,‘De Haan‘,‘LDEHAAN‘,‘515.123.4569‘,‘AD_VP‘,17000.00,NULL,100,90,‘1992-04-03 00:00:00‘),(103,‘Alexander‘,‘Hunold‘,‘AHUNOLD‘,‘590.423.4567‘,‘IT_PROG‘,9000.00,NULL,102,60,‘1992-04-03 00:00:00‘),(104,‘Bruce‘,‘Ernst‘,‘BERNST‘,‘590.423.4568‘,‘IT_PROG‘,6000.00,NULL,103,60,‘1992-04-03 00:00:00‘),(105,‘David‘,‘Austin‘,‘DAUSTIN‘,‘590.423.4569‘,‘IT_PROG‘,4800.00,NULL,103,60,‘1998-03-03 00:00:00‘),(106,‘Valli‘,‘Pataballa‘,‘VPATABAL‘,‘590.423.4560‘,‘IT_PROG‘,4800.00,NULL,103,60,‘1998-03-03 00:00:00‘),(107,‘Diana‘,‘Lorentz‘,‘DLORENTZ‘,‘590.423.5567‘,‘IT_PROG‘,4200.00,NULL,103,60,‘1998-03-03 00:00:00‘),(108,‘Nancy‘,‘Greenberg‘,‘NGREENBE‘,‘515.124.4569‘,‘FI_MGR‘,12000.00,NULL,101,100,‘1998-03-03 00:00:00‘),(109,‘Daniel‘,‘Faviet‘,‘DFAVIET‘,‘515.124.4169‘,‘FI_ACCOUNT‘,9000.00,NULL,108,100,‘1998-03-03 00:00:00‘),(110,‘John‘,‘Chen‘,‘JCHEN‘,‘515.124.4269‘,‘FI_ACCOUNT‘,8200.00,NULL,108,100,‘2000-09-09 00:00:00‘),(111,‘Ismael‘,‘Sciarra‘,‘ISCIARRA‘,‘515.124.4369‘,‘FI_ACCOUNT‘,7700.00,NULL,108,100,‘2000-09-09 00:00:00‘),(112,‘Jose Manuel‘,‘Urman‘,‘JMURMAN‘,‘515.124.4469‘,‘FI_ACCOUNT‘,7800.00,NULL,108,100,‘2000-09-09 00:00:00‘),(113,‘Luis‘,‘Popp‘,‘LPOPP‘,‘515.124.4567‘,‘FI_ACCOUNT‘,6900.00,NULL,108,100,‘2000-09-09 00:00:00‘),(114,‘Den‘,‘Raphaely‘,‘DRAPHEAL‘,‘515.127.4561‘,‘PU_MAN‘,11000.00,NULL,100,30,‘2000-09-09 00:00:00‘),(115,‘Alexander‘,‘Khoo‘,‘AKHOO‘,‘515.127.4562‘,‘PU_CLERK‘,3100.00,NULL,114,30,‘2000-09-09 00:00:00‘),(116,‘Shelli‘,‘Baida‘,‘SBAIDA‘,‘515.127.4563‘,‘PU_CLERK‘,2900.00,NULL,114,30,‘2000-09-09 00:00:00‘),(117,‘Sigal‘,‘Tobias‘,‘STOBIAS‘,‘515.127.4564‘,‘PU_CLERK‘,2800.00,NULL,114,30,‘2000-09-09 00:00:00‘),(118,‘Guy‘,‘Himuro‘,‘GHIMURO‘,‘515.127.4565‘,‘PU_CLERK‘,2600.00,NULL,114,30,‘2000-09-09 00:00:00‘),(119,‘Karen‘,‘Colmenares‘,‘KCOLMENA‘,‘515.127.4566‘,‘PU_CLERK‘,2500.00,NULL,114,30,‘2000-09-09 00:00:00‘),(120,‘Matthew‘,‘Weiss‘,‘MWEISS‘,‘650.123.1234‘,‘ST_MAN‘,8000.00,NULL,100,50,‘2004-02-06 00:00:00‘),(121,‘Adam‘,‘Fripp‘,‘AFRIPP‘,‘650.123.2234‘,‘ST_MAN‘,8200.00,NULL,100,50,‘2004-02-06 00:00:00‘),(122,‘Payam‘,‘Kaufling‘,‘PKAUFLIN‘,‘650.123.3234‘,‘ST_MAN‘,7900.00,NULL,100,50,‘2004-02-06 00:00:00‘),(123,‘Shanta‘,‘Vollman‘,‘SVOLLMAN‘,‘650.123.4234‘,‘ST_MAN‘,6500.00,NULL,100,50,‘2004-02-06 00:00:00‘),(124,‘Kevin‘,‘Mourgos‘,‘KMOURGOS‘,‘650.123.5234‘,‘ST_MAN‘,5800.00,NULL,100,50,‘2004-02-06 00:00:00‘),(125,‘Julia‘,‘Nayer‘,‘JNAYER‘,‘650.124.1214‘,‘ST_CLERK‘,3200.00,NULL,120,50,‘2004-02-06 00:00:00‘),(126,‘Irene‘,‘Mikkilineni‘,‘IMIKKILI‘,‘650.124.1224‘,‘ST_CLERK‘,2700.00,NULL,120,50,‘2004-02-06 00:00:00‘),(127,‘James‘,‘Landry‘,‘JLANDRY‘,‘650.124.1334‘,‘ST_CLERK‘,2400.00,NULL,120,50,‘2004-02-06 00:00:00‘),(128,‘Steven‘,‘Markle‘,‘SMARKLE‘,‘650.124.1434‘,‘ST_CLERK‘,2200.00,NULL,120,50,‘2004-02-06 00:00:00‘),(129,‘Laura‘,‘Bissot‘,‘LBISSOT‘,‘650.124.5234‘,‘ST_CLERK‘,3300.00,NULL,121,50,‘2004-02-06 00:00:00‘),(130,‘Mozhe‘,‘Atkinson‘,‘MATKINSO‘,‘650.124.6234‘,‘ST_CLERK‘,2800.00,NULL,121,50,‘2004-02-06 00:00:00‘),(131,‘James‘,‘Marlow‘,‘JAMRLOW‘,‘650.124.7234‘,‘ST_CLERK‘,2500.00,NULL,121,50,‘2004-02-06 00:00:00‘),(132,‘TJ‘,‘Olson‘,‘TJOLSON‘,‘650.124.8234‘,‘ST_CLERK‘,2100.00,NULL,121,50,‘2004-02-06 00:00:00‘),(133,‘Jason‘,‘Mallin‘,‘JMALLIN‘,‘650.127.1934‘,‘ST_CLERK‘,3300.00,NULL,122,50,‘2004-02-06 00:00:00‘),(134,‘Michael‘,‘Rogers‘,‘MROGERS‘,‘650.127.1834‘,‘ST_CLERK‘,2900.00,NULL,122,50,‘2002-12-23 00:00:00‘),(135,‘Ki‘,‘Gee‘,‘KGEE‘,‘650.127.1734‘,‘ST_CLERK‘,2400.00,NULL,122,50,‘2002-12-23 00:00:00‘),(136,‘Hazel‘,‘Philtanker‘,‘HPHILTAN‘,‘650.127.1634‘,‘ST_CLERK‘,2200.00,NULL,122,50,‘2002-12-23 00:00:00‘),(137,‘Renske‘,‘Ladwig‘,‘RLADWIG‘,‘650.121.1234‘,‘ST_CLERK‘,3600.00,NULL,123,50,‘2002-12-23 00:00:00‘),(138,‘Stephen‘,‘Stiles‘,‘SSTILES‘,‘650.121.2034‘,‘ST_CLERK‘,3200.00,NULL,123,50,‘2002-12-23 00:00:00‘),(139,‘John‘,‘Seo‘,‘JSEO‘,‘650.121.2019‘,‘ST_CLERK‘,2700.00,NULL,123,50,‘2002-12-23 00:00:00‘),(140,‘Joshua‘,‘Patel‘,‘JPATEL‘,‘650.121.1834‘,‘ST_CLERK‘,2500.00,NULL,123,50,‘2002-12-23 00:00:00‘),(141,‘Trenna‘,‘Rajs‘,‘TRAJS‘,‘650.121.8009‘,‘ST_CLERK‘,3500.00,NULL,124,50,‘2002-12-23 00:00:00‘),(142,‘Curtis‘,‘Davies‘,‘CDAVIES‘,‘650.121.2994‘,‘ST_CLERK‘,3100.00,NULL,124,50,‘2002-12-23 00:00:00‘),(143,‘Randall‘,‘Matos‘,‘RMATOS‘,‘650.121.2874‘,‘ST_CLERK‘,2600.00,NULL,124,50,‘2002-12-23 00:00:00‘),(144,‘Peter‘,‘Vargas‘,‘PVARGAS‘,‘650.121.2004‘,‘ST_CLERK‘,2500.00,NULL,124,50,‘2002-12-23 00:00:00‘),(145,‘John‘,‘Russell‘,‘JRUSSEL‘,‘011.44.1344.429268‘,‘SA_MAN‘,14000.00,0.40,100,80,‘2002-12-23 00:00:00‘),(146,‘Karen‘,‘Partners‘,‘KPARTNER‘,‘011.44.1344.467268‘,‘SA_MAN‘,13500.00,0.30,100,80,‘2002-12-23 00:00:00‘),(147,‘Alberto‘,‘Errazuriz‘,‘AERRAZUR‘,‘011.44.1344.429278‘,‘SA_MAN‘,12000.00,0.30,100,80,‘2002-12-23 00:00:00‘),(148,‘Gerald‘,‘Cambrault‘,‘GCAMBRAU‘,‘011.44.1344.619268‘,‘SA_MAN‘,11000.00,0.30,100,80,‘2002-12-23 00:00:00‘),(149,‘Eleni‘,‘Zlotkey‘,‘EZLOTKEY‘,‘011.44.1344.429018‘,‘SA_MAN‘,10500.00,0.20,100,80,‘2002-12-23 00:00:00‘),(150,‘Peter‘,‘Tucker‘,‘PTUCKER‘,‘011.44.1344.129268‘,‘SA_REP‘,10000.00,0.30,145,80,‘2014-03-05 00:00:00‘),(151,‘David‘,‘Bernstein‘,‘DBERNSTE‘,‘011.44.1344.345268‘,‘SA_REP‘,9500.00,0.25,145,80,‘2014-03-05 00:00:00‘),(152,‘Peter‘,‘Hall‘,‘PHALL‘,‘011.44.1344.478968‘,‘SA_REP‘,9000.00,0.25,145,80,‘2014-03-05 00:00:00‘),(153,‘Christopher‘,‘Olsen‘,‘COLSEN‘,‘011.44.1344.498718‘,‘SA_REP‘,8000.00,0.20,145,80,‘2014-03-05 00:00:00‘),(154,‘Nanette‘,‘Cambrault‘,‘NCAMBRAU‘,‘011.44.1344.987668‘,‘SA_REP‘,7500.00,0.20,145,80,‘2014-03-05 00:00:00‘),(155,‘Oliver‘,‘Tuvault‘,‘OTUVAULT‘,‘011.44.1344.486508‘,‘SA_REP‘,7000.00,0.15,145,80,‘2014-03-05 00:00:00‘),(156,‘Janette‘,‘K_ing‘,‘JKING‘,‘011.44.1345.429268‘,‘SA_REP‘,10000.00,0.35,146,80,‘2014-03-05 00:00:00‘),(157,‘Patrick‘,‘Sully‘,‘PSULLY‘,‘011.44.1345.929268‘,‘SA_REP‘,9500.00,0.35,146,80,‘2014-03-05 00:00:00‘),(158,‘Allan‘,‘McEwen‘,‘AMCEWEN‘,‘011.44.1345.829268‘,‘SA_REP‘,9000.00,0.35,146,80,‘2014-03-05 00:00:00‘),(159,‘Lindsey‘,‘Smith‘,‘LSMITH‘,‘011.44.1345.729268‘,‘SA_REP‘,8000.00,0.30,146,80,‘2014-03-05 00:00:00‘),(160,‘Louise‘,‘Doran‘,‘LDORAN‘,‘011.44.1345.629268‘,‘SA_REP‘,7500.00,0.30,146,80,‘2014-03-05 00:00:00‘),(161,‘Sarath‘,‘Sewall‘,‘SSEWALL‘,‘011.44.1345.529268‘,‘SA_REP‘,7000.00,0.25,146,80,‘2014-03-05 00:00:00‘),(162,‘Clara‘,‘Vishney‘,‘CVISHNEY‘,‘011.44.1346.129268‘,‘SA_REP‘,10500.00,0.25,147,80,‘2014-03-05 00:00:00‘),(163,‘Danielle‘,‘Greene‘,‘DGREENE‘,‘011.44.1346.229268‘,‘SA_REP‘,9500.00,0.15,147,80,‘2014-03-05 00:00:00‘),(164,‘Mattea‘,‘Marvins‘,‘MMARVINS‘,‘011.44.1346.329268‘,‘SA_REP‘,7200.00,0.10,147,80,‘2014-03-05 00:00:00‘),(165,‘David‘,‘Lee‘,‘DLEE‘,‘011.44.1346.529268‘,‘SA_REP‘,6800.00,0.10,147,80,‘2014-03-05 00:00:00‘),(166,‘Sundar‘,‘Ande‘,‘SANDE‘,‘011.44.1346.629268‘,‘SA_REP‘,6400.00,0.10,147,80,‘2014-03-05 00:00:00‘),(167,‘Amit‘,‘Banda‘,‘ABANDA‘,‘011.44.1346.729268‘,‘SA_REP‘,6200.00,0.10,147,80,‘2014-03-05 00:00:00‘),(168,‘Lisa‘,‘Ozer‘,‘LOZER‘,‘011.44.1343.929268‘,‘SA_REP‘,11500.00,0.25,148,80,‘2014-03-05 00:00:00‘),(169,‘Harrison‘,‘Bloom‘,‘HBLOOM‘,‘011.44.1343.829268‘,‘SA_REP‘,10000.00,0.20,148,80,‘2014-03-05 00:00:00‘),(170,‘Tayler‘,‘Fox‘,‘TFOX‘,‘011.44.1343.729268‘,‘SA_REP‘,9600.00,0.20,148,80,‘2014-03-05 00:00:00‘),(171,‘William‘,‘Smith‘,‘WSMITH‘,‘011.44.1343.629268‘,‘SA_REP‘,7400.00,0.15,148,80,‘2014-03-05 00:00:00‘),(172,‘Elizabeth‘,‘Bates‘,‘EBATES‘,‘011.44.1343.529268‘,‘SA_REP‘,7300.00,0.15,148,80,‘2014-03-05 00:00:00‘),(173,‘Sundita‘,‘Kumar‘,‘SKUMAR‘,‘011.44.1343.329268‘,‘SA_REP‘,6100.00,0.10,148,80,‘2014-03-05 00:00:00‘),(174,‘Ellen‘,‘Abel‘,‘EABEL‘,‘011.44.1644.429267‘,‘SA_REP‘,11000.00,0.30,149,80,‘2014-03-05 00:00:00‘),(175,‘Alyssa‘,‘Hutton‘,‘AHUTTON‘,‘011.44.1644.429266‘,‘SA_REP‘,8800.00,0.25,149,80,‘2014-03-05 00:00:00‘),(176,‘Jonathon‘,‘Taylor‘,‘JTAYLOR‘,‘011.44.1644.429265‘,‘SA_REP‘,8600.00,0.20,149,80,‘2014-03-05 00:00:00‘),(177,‘Jack‘,‘Livingston‘,‘JLIVINGS‘,‘011.44.1644.429264‘,‘SA_REP‘,8400.00,0.20,149,80,‘2014-03-05 00:00:00‘),(178,‘Kimberely‘,‘Grant‘,‘KGRANT‘,‘011.44.1644.429263‘,‘SA_REP‘,7000.00,0.15,149,NULL,‘2014-03-05 00:00:00‘),(179,‘Charles‘,‘Johnson‘,‘CJOHNSON‘,‘011.44.1644.429262‘,‘SA_REP‘,6200.00,0.10,149,80,‘2014-03-05 00:00:00‘),(180,‘Winston‘,‘Taylor‘,‘WTAYLOR‘,‘650.507.9876‘,‘SH_CLERK‘,3200.00,NULL,120,50,‘2014-03-05 00:00:00‘),(181,‘Jean‘,‘Fleaur‘,‘JFLEAUR‘,‘650.507.9877‘,‘SH_CLERK‘,3100.00,NULL,120,50,‘2014-03-05 00:00:00‘),(182,‘Martha‘,‘Sullivan‘,‘MSULLIVA‘,‘650.507.9878‘,‘SH_CLERK‘,2500.00,NULL,120,50,‘2014-03-05 00:00:00‘),(183,‘Girard‘,‘Geoni‘,‘GGEONI‘,‘650.507.9879‘,‘SH_CLERK‘,2800.00,NULL,120,50,‘2014-03-05 00:00:00‘),(184,‘Nandita‘,‘Sarchand‘,‘NSARCHAN‘,‘650.509.1876‘,‘SH_CLERK‘,4200.00,NULL,121,50,‘2014-03-05 00:00:00‘),(185,‘Alexis‘,‘Bull‘,‘ABULL‘,‘650.509.2876‘,‘SH_CLERK‘,4100.00,NULL,121,50,‘2014-03-05 00:00:00‘),(186,‘Julia‘,‘Dellinger‘,‘JDELLING‘,‘650.509.3876‘,‘SH_CLERK‘,3400.00,NULL,121,50,‘2014-03-05 00:00:00‘),(187,‘Anthony‘,‘Cabrio‘,‘ACABRIO‘,‘650.509.4876‘,‘SH_CLERK‘,3000.00,NULL,121,50,‘2014-03-05 00:00:00‘),(188,‘Kelly‘,‘Chung‘,‘KCHUNG‘,‘650.505.1876‘,‘SH_CLERK‘,3800.00,NULL,122,50,‘2014-03-05 00:00:00‘),(189,‘Jennifer‘,‘Dilly‘,‘JDILLY‘,‘650.505.2876‘,‘SH_CLERK‘,3600.00,NULL,122,50,‘2014-03-05 00:00:00‘),(190,‘Timothy‘,‘Gates‘,‘TGATES‘,‘650.505.3876‘,‘SH_CLERK‘,2900.00,NULL,122,50,‘2014-03-05 00:00:00‘),(191,‘Randall‘,‘Perkins‘,‘RPERKINS‘,‘650.505.4876‘,‘SH_CLERK‘,2500.00,NULL,122,50,‘2014-03-05 00:00:00‘),(192,‘Sarah‘,‘Bell‘,‘SBELL‘,‘650.501.1876‘,‘SH_CLERK‘,4000.00,NULL,123,50,‘2014-03-05 00:00:00‘),(193,‘Britney‘,‘Everett‘,‘BEVERETT‘,‘650.501.2876‘,‘SH_CLERK‘,3900.00,NULL,123,50,‘2014-03-05 00:00:00‘),(194,‘Samuel‘,‘McCain‘,‘SMCCAIN‘,‘650.501.3876‘,‘SH_CLERK‘,3200.00,NULL,123,50,‘2014-03-05 00:00:00‘),(195,‘Vance‘,‘Jones‘,‘VJONES‘,‘650.501.4876‘,‘SH_CLERK‘,2800.00,NULL,123,50,‘2014-03-05 00:00:00‘),(196,‘Alana‘,‘Walsh‘,‘AWALSH‘,‘650.507.9811‘,‘SH_CLERK‘,3100.00,NULL,124,50,‘2014-03-05 00:00:00‘),(197,‘Kevin‘,‘Feeney‘,‘KFEENEY‘,‘650.507.9822‘,‘SH_CLERK‘,3000.00,NULL,124,50,‘2014-03-05 00:00:00‘),(198,‘Donald‘,‘OConnell‘,‘DOCONNEL‘,‘650.507.9833‘,‘SH_CLERK‘,2600.00,NULL,124,50,‘2014-03-05 00:00:00‘),(199,‘Douglas‘,‘Grant‘,‘DGRANT‘,‘650.507.9844‘,‘SH_CLERK‘,2600.00,NULL,124,50,‘2014-03-05 00:00:00‘),(200,‘Jennifer‘,‘Whalen‘,‘JWHALEN‘,‘515.123.4444‘,‘AD_ASST‘,4400.00,NULL,101,10,‘2016-03-03 00:00:00‘),(201,‘Michael‘,‘Hartstein‘,‘MHARTSTE‘,‘515.123.5555‘,‘MK_MAN‘,13000.00,NULL,100,20,‘2016-03-03 00:00:00‘),(202,‘Pat‘,‘Fay‘,‘PFAY‘,‘603.123.6666‘,‘MK_REP‘,6000.00,NULL,201,20,‘2016-03-03 00:00:00‘),(203,‘Susan‘,‘Mavris‘,‘SMAVRIS‘,‘515.123.7777‘,‘HR_REP‘,6500.00,NULL,101,40,‘2016-03-03 00:00:00‘),(204,‘Hermann‘,‘Baer‘,‘HBAER‘,‘515.123.8888‘,‘PR_REP‘,10000.00,NULL,101,70,‘2016-03-03 00:00:00‘),(205,‘Shelley‘,‘Higgins‘,‘SHIGGINS‘,‘515.123.8080‘,‘AC_MGR‘,12000.00,NULL,101,110,‘2016-03-03 00:00:00‘),(206,‘William‘,‘Gietz‘,‘WGIETZ‘,‘515.123.8181‘,‘AC_ACCOUNT‘,8300.00,NULL,205,110,‘2016-03-03 00:00:00‘); 64 65 /*Table structure for table `jobs` */ 66 67 DROP TABLE IF EXISTS `jobs`; 68 69 CREATE TABLE `jobs` ( 70 `job_id` varchar(10) NOT NULL, 71 `job_title` varchar(35) DEFAULT NULL, 72 `min_salary` int(6) DEFAULT NULL, 73 `max_salary` int(6) DEFAULT NULL, 74 PRIMARY KEY (`job_id`) 75 ) ENGINE=InnoDB DEFAULT CHARSET=gb2312; 76 77 /*Data for the table `jobs` */ 78 79 insert into `jobs`(`job_id`,`job_title`,`min_salary`,`max_salary`) values (‘AC_ACCOUNT‘,‘Public Accountant‘,4200,9000),(‘AC_MGR‘,‘Accounting Manager‘,8200,16000),(‘AD_ASST‘,‘Administration Assistant‘,3000,6000),(‘AD_PRES‘,‘President‘,20000,40000),(‘AD_VP‘,‘Administration Vice President‘,15000,30000),(‘FI_ACCOUNT‘,‘Accountant‘,4200,9000),(‘FI_MGR‘,‘Finance Manager‘,8200,16000),(‘HR_REP‘,‘Human Resources Representative‘,4000,9000),(‘IT_PROG‘,‘Programmer‘,4000,10000),(‘MK_MAN‘,‘Marketing Manager‘,9000,15000),(‘MK_REP‘,‘Marketing Representative‘,4000,9000),(‘PR_REP‘,‘Public Relations Representative‘,4500,10500),(‘PU_CLERK‘,‘Purchasing Clerk‘,2500,5500),(‘PU_MAN‘,‘Purchasing Manager‘,8000,15000),(‘SA_MAN‘,‘Sales Manager‘,10000,20000),(‘SA_REP‘,‘Sales Representative‘,6000,12000),(‘SH_CLERK‘,‘Shipping Clerk‘,2500,5500),(‘ST_CLERK‘,‘Stock Clerk‘,2000,5000),(‘ST_MAN‘,‘Stock Manager‘,5500,8500); 80 81 /*Table structure for table `locations` */ 82 83 DROP TABLE IF EXISTS `locations`; 84 85 CREATE TABLE `locations` ( 86 `location_id` int(11) NOT NULL AUTO_INCREMENT, 87 `street_address` varchar(40) DEFAULT NULL, 88 `postal_code` varchar(12) DEFAULT NULL, 89 `city` varchar(30) DEFAULT NULL, 90 `state_province` varchar(25) DEFAULT NULL, 91 `country_id` varchar(2) DEFAULT NULL, 92 PRIMARY KEY (`location_id`) 93 ) ENGINE=InnoDB AUTO_INCREMENT=3201 DEFAULT CHARSET=gb2312; 94 95 /*Data for the table `locations` */ 96 97 insert into `locations`(`location_id`,`street_address`,`postal_code`,`city`,`state_province`,`country_id`) values (1000,‘1297 Via Cola di Rie‘,‘00989‘,‘Roma‘,NULL,‘IT‘),(1100,‘93091 Calle della Testa‘,‘10934‘,‘Venice‘,NULL,‘IT‘),(1200,‘2017 Shinjuku-ku‘,‘1689‘,‘Tokyo‘,‘Tokyo Prefecture‘,‘JP‘),(1300,‘9450 Kamiya-cho‘,‘6823‘,‘Hiroshima‘,NULL,‘JP‘),(1400,‘2014 Jabberwocky Rd‘,‘26192‘,‘Southlake‘,‘Texas‘,‘US‘),(1500,‘2011 Interiors Blvd‘,‘99236‘,‘South San Francisco‘,‘California‘,‘US‘),(1600,‘2007 Zagora St‘,‘50090‘,‘South Brunswick‘,‘New Jersey‘,‘US‘),(1700,‘2004 Charade Rd‘,‘98199‘,‘Seattle‘,‘Washington‘,‘US‘),(1800,‘147 Spadina Ave‘,‘M5V 2L7‘,‘Toronto‘,‘Ontario‘,‘CA‘),(1900,‘6092 Boxwood St‘,‘YSW 9T2‘,‘Whitehorse‘,‘Yukon‘,‘CA‘),(2000,‘40-5-12 Laogianggen‘,‘190518‘,‘Beijing‘,NULL,‘CN‘),(2100,‘1298 Vileparle (E)‘,‘490231‘,‘Bombay‘,‘Maharashtra‘,‘IN‘),(2200,‘12-98 Victoria Street‘,‘2901‘,‘Sydney‘,‘New South Wales‘,‘AU‘),(2300,‘198 Clementi North‘,‘540198‘,‘Singapore‘,NULL,‘SG‘),(2400,‘8204 Arthur St‘,NULL,‘London‘,NULL,‘UK‘),(2500,‘Magdalen Centre, The Oxford Science Park‘,‘OX9 9ZB‘,‘Oxford‘,‘Oxford‘,‘UK‘),(2600,‘9702 Chester Road‘,‘09629850293‘,‘Stretford‘,‘Manchester‘,‘UK‘),(2700,‘Schwanthalerstr. 7031‘,‘80925‘,‘Munich‘,‘Bavaria‘,‘DE‘),(2800,‘Rua Frei Caneca 1360 ‘,‘01307-002‘,‘Sao Paulo‘,‘Sao Paulo‘,‘BR‘),(2900,‘20 Rue des Corps-Saints‘,‘1730‘,‘Geneva‘,‘Geneve‘,‘CH‘),(3000,‘Murtenstrasse 921‘,‘3095‘,‘Bern‘,‘BE‘,‘CH‘),(3100,‘Pieter Breughelstraat 837‘,‘3029SK‘,‘Utrecht‘,‘Utrecht‘,‘NL‘),(3200,‘Mariano Escobedo 9991‘,‘11932‘,‘Mexico City‘,‘Distrito Federal,‘,‘MX‘); 98 99 /*!40101 SET SQL_MODE=@OLD_SQL_MODE */; 100 /*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */; 101 /*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */; 102 /*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;
基础查询
1 # 基础查询DQL data query language 2 /* 3 特点: 4 1.查询列表可以是:表中的字段、常量值、表达式、函数 5 2.查询的结果是一张虚拟表 6 */ 7 8 USE myemployees; 9 # 1.查询单个字段 10 SELECT last_name FROM employees; 11 # 2.查询表中多个字段 12 SELECT last_name, email FROM employees; 13 # 3.查询表中所有字段 14 SELECT * FROM employees; 15 # 4.查询表中所有字段方式2 着重号区分字段与关键字 16 SELECT 17 `first_name`, 18 `last_name`, 19 `email`, 20 `salary` 21 FROM 22 employees; 23 24 # 5.查询常量值 25 SELECT 100; 26 27 # 6.查询表达式 28 SELECT 100*98 29 30 # 7.查询函数 31 SELECT VERSION(); 32 33 34 35 # 8. 起别名 36 # 方式1 37 SELECT 100*98 AS 结果; 38 SELECT last_name AS 姓, first_name AS 名 FROM employees; 39 40 # 方式2 41 SELECT last_name 姓,first_name 名 FROM employees; 42 43 # 方式3 区分与关键字发生冲突 加双引号 44 SELECT last_name "OUT put" FROM employees 45 46 47 # 9.去重 48 SELECT DISTINCT department_id FROM employees; 49 50 # 10.连接符 51 SELECT CONCAT(first_name, " ", last_name) AS 姓名 FROM employees; 52 53 54 # 11.IFNULL(expr1,expr2)的使用 55 SELECT CONCAT(last_name, first_name, IFNULL(commission_pct, 0)) FROM employees;
条件查询
1 # 一. 按照条件表达式查询 2 3 # 1.查询出工资大于12000的员工信息 4 5 SELECT 6 * 7 FROM 8 employees 9 WHERE 10 salary > 12000; 11 12 # 2.查询出员工编号不等于90的员工名字与部门编号 13 SELECT last_name, department_id FROM employees WHERE department_id != 90; 14 15 16 # 二.按照逻辑表达式查询 17 # 1. 查询工资在10000-20000的员工名,工资,奖金 18 SELECT last_name, salary, commission_pct FROM employees WHERE salary>10000 AND salary<20000; 19 20 21 # 三、模糊查询
常见函数
1 # 1.流程控制函数 IF(expr1,expr2,expr3)函数 2 # 2.流程控制函数 case函数 后面跟字段或表达式 或者都不跟 单行函数 3 SELECT 4 salary 原工资, 5 department_id, 6 CASE 7 department_id 8 WHEN 30 THEN 9 salary * 1.1 10 WHEN 40 THEN 11 salary * 1.2 12 WHEN 50 THEN 13 salary * 1.3 ELSE salary 14 END AS 新工资 15 FROM 16 employees; 17 18 19 SELECT 20 salary, 21 CASE 22 23 WHEN salary > 20000 THEN 24 ‘A‘ 25 WHEN salary > 15000 THEN 26 ‘B‘ 27 WHEN salary > 10000 THEN 28 ‘C‘ ELSE ‘D‘ 29 END AS 工资级别 30 FROM 31 employees;
分组查询
1 # GROUP BY 2 -- 查询每个工种的最高工资 3 -- 语法: 分组函数 列 表 分组 字段 4 SELECT 5 MAX( salary ), 6 job_id 7 FROM 8 employees 9 GROUP BY 10 job_id; 11 12 13 -- 查询每个位置上的部门个数 14 SELECT COUNT(*), location_id FROM departments GROUP BY location_id; 15 16 17 -- 查询邮箱中包含a字符的,每个部门的平均工资 18 SELECT 19 AVG( salary ), 20 department_id, 21 email 22 FROM 23 employees 24 WHERE 25 email LIKE ‘%a%‘ 26 GROUP BY 27 department_id; 28 29 -- 查询有奖金的每个领导员工的最高工资 30 SELECT MAX(salary), manager_id FROM employees WHERE commission_pct IS NOT NULL GROUP BY manager_id; 31 32 -- 查询哪个部门的员工个数大于2 添加分组后的刷选 33 # 1.首先查出每个部门员工的个数 34 SELECT COUNT(*), department_id FROM employees GROUP BY department_id; 35 # 2.再在新临时表后加筛选 36 SELECT COUNT(*), department_id FROM employees GROUP BY department_id HAVING COUNT(*) > 2; 37 38 39 -- 查询每个工种有奖金的员工的最高工资大于12000的工种编号和最高工资; 40 -- 1.查询每个工种有奖金的员工的最高工资 41 SELECT MAX(salary), job_id FROM employees WHERE commission_pct IS NOT NULL GROUP BY job_id; 42 -- 2.在1之后的结果再加条件 43 SELECT 44 MAX( salary ) AS 最高工资, 45 job_id 46 FROM 47 employees 48 WHERE 49 commission_pct IS NOT NULL 50 GROUP BY 51 job_id 52 HAVING 53 最高工资 > 12000; 54 55 56 -- 查询领导编号大于102的每个领导手下的最低工资大于5000的领导编号是哪个 以及最低工资 57 58 SELECT 59 MIN( salary ), 60 manager_id 61 FROM 62 employees 63 WHERE 64 manager_id > 102 65 GROUP BY 66 manager_id 67 HAVING 68 MIN( salary )> 5000;
分组函数
1 # 分组函数 统计作用 2 -- SUM AVG处理数字型 3 -- MIN MAX COUNT可以处理任何类型 日期 字符都行 4 5 SELECT SUM(salary) 和, ROUND(AVG(salary), 2) 平均, MIN(salary) 最小, MAX(salary) 最大, COUNT(salary) 个数 FROM employees; 6 7 -- 和distinct搭配使用 8 SELECT SUM(DISTINCT(salary)), SUM(salary) FROM employees; 9 10 -- count的详细使用 11 12 SELECT COUNT(salary) FROM employees; 13 14 -- 统计行数 效率稍微比上边高点 15 SELECT COUNT(1) FROM employees; 16 SELECT COUNT(*) FROM employees; # 这种情况用的比较多
连接查询
1 # SQL92 2 # 连接查询 多张表查询 3 USE girls; 4 -- 笛卡尔积乘积现象 5 SELECT NAME, boyname FROM beauty, boys; #没有条件去约束 6 7 8 # 1.等值连接 9 SELECT NAME 10 , 11 boyname 12 FROM 13 beauty, 14 boys 15 WHERE 16 beauty.boyfriend_id = boys.id; 17 18 -- 查询员工对应的部门 19 USE myemployees; 20 SELECT 21 last_name, 22 department_name 23 FROM 24 employees, 25 departments 26 WHERE 27 employees.department_id = departments.department_id; 28 29 30 -- 查询员工名 工种号 工种名 31 SELECT 32 last_name, 33 employees.job_id, 34 job_title 35 FROM 36 employees, 37 jobs 38 WHERE 39 employees.job_id = jobs.job_id; 40 41 SELECT 42 last_name, 43 e.job_id, 44 job_title 45 FROM 46 employees e, 47 jobs j 48 WHERE 49 e.job_id = j.job_id; 50 51 52 -- 可以加筛选 分组group by 分组后筛选having 排序order by 53 -- 查询城市名第二个字符为o的部门名以及城市名 54 SELECT 55 department_name, 56 city 57 FROM 58 departments, 59 locations 60 WHERE 61 locations.location_id = departments.location_id 62 AND city LIKE ‘_o%‘; 63 64 65 -- 非等值连接 与等值连接一样可以加分组 排序等条件 66 CREATE TABLE job_grades( 67 grade_level VARCHAR(3), 68 lowest_sal INT, 69 highest_sal INT 70 ); 71 72 INSERT INTO job_grades(grade_level, lowest_sal, highest_sal) VALUES 73 ("A", 1000, 2999), 74 ("B", 3000, 5999), 75 ("C", 6000, 9999), 76 ("D", 10000, 14999), 77 ("E", 15000, 24999), 78 ("F", 25000, 40000); 79 80 # 查询员工的工资以及对应的级别 81 SELECT 82 salary, 83 grade_level 84 FROM 85 employees e, 86 job_grades g 87 WHERE 88 salary BETWEEN g.lowest_sal 89 AND g.highest_sal; 90 91 -- 自连接 92 -- 查询员工名与上级名 93 SELECT last_name, manager_id, employee_id FROM employees; 94 SELECT 95 e.employee_id, 96 e.last_name, 97 m.last_name, 98 m.employee_id 99 FROM 100 employees e, 101 employees m 102 WHERE 103 e.manager_id = m.employee_id; 104
SQL99语法连接
1 # SQL99语法 2 /* 3 -- 格式: 4 SELECT 查询列表 5 FROM 表1 别名 连接类型 6 JOIN 表2 别名 7 ON 连接条件 8 WHERE 筛选条件 9 GROUP BY 分组 10 HAVING 筛选条件 11 ORDER BY 排序列表 12 13 14 分类 15 内连接: INNER JOIN 等值 非等值 自连接 16 外连接 17 左外 LEFT OUTER 18 右外 RIGHT OUTER 19 全外 FULL OUTER 20 交叉连接 cross 21 22 内连接 23 语法: 24 SELECT 查询列表 25 FROM 表1 别名 26 INNER JOIN 表2 别名 27 ON 连接条件 28 */ 29 30 #1. 等值连接 31 # 案例1: 查询员工名、部门名 32 SELECT 33 last_name, 34 department_name 35 FROM 36 employees e 37 INNER JOIN departments d ON e.department_id = d.department_id; 38 39 # 案例2 查询名字中包含e的员工名和工种名 40 SELECT 41 last_name, 42 job_title 43 FROM 44 employees e 45 INNER JOIN jobs j 46 ON e.job_id = j.job_id 47 WHERE e.last_name LIKE ‘%e%‘; 48 49 # 案例3 查询部门个数大于3的城市名与部门个数 50 # 案例4 查询哪个部门的员工个数>3的部门名和员工个数,并按照个数排序(降序) 51 SELECT department_name, COUNT(*) 个数 FROM employees e INNER JOIN departments d ON e.department_id = d.department_id 52 GROUP BY department_name 53 HAVING COUNT(*) > 3 54 ORDER BY COUNT(*) DESC; 55 56 # 案例5查询员工名 部门名 工种名 并按照部门名降序 57 SELECT 58 last_name, 59 department_name, 60 job_title 61 FROM 62 employees e 63 INNER JOIN departments d ON e.employee_id = d.department_id 64 INNER JOIN jobs j ON e.job_id = j.job_id 65 ORDER BY 66 department_name DESC; 67 68 69 # 2.非等值连接 70 # 查询员工的工资级别 71 SELECT 72 salary, 73 grade_level 74 FROM 75 employees e 76 JOIN job_grades j ON e.salary BETWEEN j.lowest_sal 77 AND j.highest_sal; 78 79 # 查询员工的工资级别个数大于20的个数并且已工资级别降序 80 SELECT 81 COUNT(*), 82 grade_level 83 FROM 84 employees e 85 JOIN job_grades j ON e.salary BETWEEN j.lowest_sal 86 AND j.highest_sal 87 GROUP BY 88 grade_level 89 HAVING 90 COUNT(*) > 20 91 ORDER BY 92 grade_level DESC; 93 94 # 3 自连接 95 # 查询姓名中包含字符K的员工的名字 上级的名字 其中inner可以省掉 96 SELECT e.last_name, m.last_name 97 FROM employees e 98 INNER JOIN employees m 99 ON e.manager_id = m.employee_id 100 WHERE e.last_name LIKE ‘%k%‘; 101 102 103 -- 二 外连接 104 # 外连接应用场景就是一张表关联另外一张表里边没有的数据 105 # 左外连接 left JOIN左边的是主表 106 # 右外连接 right JOIN 右边的是主表 107 # 左外 与 右外 交换两张表的顺序 最终的结果是一样的 108 # 查询男朋友不在男神表中的女神名字 109 USE girls; 110 # 左外连接 111 SELECT 112 b.NAME, 113 bo.* 114 FROM 115 beauty b 116 LEFT OUTER JOIN boys bo ON b.boyfriend_id = bo.id 117 WHERE 118 bo.id IS NULL; 119 # 右外连接 120 SELECT 121 b.NAME, 122 bo.* 123 FROM 124 boys bo 125 RIGHT OUTER JOIN beauty b ON b.boyfriend_id = bo.id 126 WHERE 127 bo.id IS NULL; 128 129 # 全外连接 130 # 全外连接的结果就是相当于内连接的结果+表1中有的但表2中没有+表2中有的但表1中没有 131 -- FULL OUTER JOIN 在mysql中是不支持全外连接的 132 SELECT 133 b.NAME, 134 bo.* 135 FROM 136 boys bo 137 FULL OUTER JOIN beauty b ON b.boyfriend_id = bo.id 138 WHERE 139 bo.id IS NULL; 140 141 # 交叉连接 142 -- CROSS JOIN 143 SELECT b.*,bo.* FROM beauty b CROSS JOIN boys bo; 144 145