RDD 编程练习
目录
一、filter, map, flatmap 练习:
- 读文本文件生成 RDD lines
>>> lines=sc.textFile("file:///usr/local/spark/mycode/rdd/word.txt")
- 将一行一行的文本分割成单词 words
>>> words = lines.flatMap(lambda line:line.split()).collect()
- 全部转换为小写
>>> wordsL = sc.parallelize(words)
>>> sc.parallelize(words).pipe("tr 'A-Z' 'a-z'").collect()
- 去掉长度小于3的单词
>>> wordsL = sc.parallelize(words)
>>> wordsL.collect()
>>> wordsL.filter(lambda word:len(word)>3).collect()
- 去掉停用词
>>> with open('/usr/local/spark/mycode/rdd/stopwords.txt')as f:
... stops=f.read().split()
>>> wordsL.filter(lambda word:word not in stops).collect()
二、groupByKey 练习:
- 练习一的生成单词键值对
>>> words = sc.parallelize([("Hadoop",1),("is",1),("good",1),("Spark",1),\
... ("is"),("fast",1),("Spark",1),("is",1),("better",1)])
- 对单词进行分组
>>> wordsL = words.groupByKey()
- 查看分组结果
>>> wordsL.foreach(print)
三、学生科目成绩文件练习:
- 数据文件上传
>>> lines = sc.textFile('file:///usr/local/spark/mycode/rdd/chapter4-data01.txt')
- 读大学计算机系的成绩数据集生成 RDD
>>> lines.take(5)
- 按学生汇总全部科目的成绩
>>> groupByName=lines.map(lambda line:line.split(',')).\
... map(lambda line:(line[0],(line[1],line[2]))).groupByKey()
>>> groupByName.take(5)
>>> groupByName.first()
>>> for i in groupByName.first()[1]:
... print(i)
- 按科目汇总学生的成绩
>>> groupByCourse=lines.map(lambda line:line.split(',')).\
... map(lambda line:(line[1],(line[0],line[2]))).groupByKey()
>>> groupByCourse.first()
>>> for i in groupByCourse.first()[1]:
... print(i)