Linux内核启动流程分析

转自:Linux内核启动流程分析(一)_kunkliu的博客-CSDN博客

本文以Linux3.14版本源码为例分析其启动流程。各版本启动代码略有不同,但核心流程与思想万变不离其宗。

内核映像被加载到内存并获得控制权之后,内核启动流程开始。通常,内核映像以压缩形式存储,并不是一个可以执行的内核。因此,在内核阶段的首要工作是自解压内核映像。

内核编译生成vmliunx后,通常会对其进行压缩,得到zImage(小内核,小于512KB)或bzImage(大内核,大于512KB)。在它们的头部嵌有解压缩程序。

通过linux/arch/arm/boot/compressed目录下的Makefile寻找到vmlinux文件的链接脚本(vmlinux.lds),从中查找系统启动入口函数。

$(obj)/vmlinux: $(obj)/vmlinux.lds $(obj)/$(HEAD) $(obj)/piggy.$(suffix_y).o \
        $(addprefix $(obj)/, $(OBJS)) $(lib1funcs) $(ashldi3) \
        $(bswapsdi2) FORCE
    @$(check_for_multiple_zreladdr)
    $(call if_changed,ld)
    @$(check_for_bad_syms)
vmlinux.lds(linux/arch/arm/kernel/vmlinux.lds)链接脚本开头内容

OUTPUT_ARCH(arm)
ENTRY(stext)
jiffies = jiffies_64;
SECTIONS
{
    。
    。
    。
得到内核入口函数为 stext(linux/arch/arm/kernel/head.S)

内核引导阶段
ENTRY(stext)
    。
    。
    。
    bl    __lookup_processor_type    @ r5=procinfo r9=cpuid                             //处理器是否支持
    movs    r10, r5                @ invalid processor (r5=0)?
 THUMB( it    eq )        @ force fixup-able long branch encoding
    beq    __error_p            @ yes, error 'p'                           //不支持则打印错误信息
 
          。
    。
    。
    bl    __create_page_tables                                                       //创建页表
 
    /*
     * The following calls CPU specific code in a position independent
     * manner.  See arch/arm/mm/proc-*.S for details.  r10 = base of
     * xxx_proc_info structure selected by __lookup_processor_type
     * above.  On return, the CPU will be ready for the MMU to be
     * turned on, and r0 will hold the CPU control register value.
     */
    ldr    r13, =__mmap_switched        @ address to jump to after                 //保存MMU使能后跳转地址
                        @ mmu has been enabled
    adr    lr, BSYM(1f)            @ return (PIC) address
    mov    r8, r4                @ set TTBR1 to swapper_pg_dir
 ARM(    add    pc, r10, #PROCINFO_INITFUNC    )
 THUMB(    add    r12, r10, #PROCINFO_INITFUNC    )
 THUMB(    mov    pc, r12                )
1:    b    __enable_mmu                                                                           //使能MMU后跳转到__mmap_switched
查找标签__mmap_switched所在位置:/linux/arch/arm/kernel/head-common.S
__mmap_switched:
    /*
     * The following fragment of code is executed with the MMU on in MMU mode,
     * and uses absolute addresses; this is not position independent.
     *
     *  r0  = cp#15 control register
     *  r1  = machine ID
     *  r2  = atags/dtb pointer
     *  r9  = processor ID
     */
    //保存设备信息、设备树及启动参数存储地址
    。
    。
    。
    b    start_kernel
 

内核初始化阶段
从start_kernel函数开始,内核进入C语言部分,完成内核的大部分初始化工作。

函数所在位置:/linux/init/Main.c

start_kernel涉及大量初始化工作,只例举重要的初始化工作。

asmlinkage void __init start_kernel(void)
{
    ……                                                                              //类型判断
    smp_setup_processor_id();                                                         //smp相关,返回启动CPU号
    ……
    local_irq_disable();                                                                   //关闭当前CPU中断
    early_boot_irqs_disabled = true;
/*
 * Interrupts are still disabled. Do necessary setups, then
 * enable them
 */
    boot_cpu_init();
    page_address_init();                                                            //初始化页地址
    pr_notice("%s", linux_banner);                                                   //显示内核版本信息
    setup_arch(&command_line);
    mm_init_owner(&init_mm, &init_task);
    mm_init_cpumask(&init_mm);
    setup_command_line(command_line);
    setup_nr_cpu_ids();
    setup_per_cpu_areas();
    smp_prepare_boot_cpu();    /* arch-specific boot-cpu hooks */
 
    build_all_zonelists(NULL, NULL);
    page_alloc_init();                                                                            //页内存申请初始化
 
    pr_notice("Kernel command line: %s\n", boot_command_line);                                     //打印内核启动命令行参数
    parse_early_param();
    parse_args("Booting kernel", static_command_line, __start___param,
           __stop___param - __start___param,
           -1, -1, &unknown_bootoption);
 
    ……
    /*
     * Set up the scheduler prior starting any interrupts (such as the
     * timer interrupt). Full topology setup happens at smp_init()
     * time - but meanwhile we still have a functioning scheduler.
     */
    sched_init();                                                                                    //进程调度器初始化
    /*
     * Disable preemption - early bootup scheduling is extremely
     * fragile until we cpu_idle() for the first time.
     */
    preempt_disable();                                                                                    //禁止内核抢占
    if (WARN(!irqs_disabled(), "Interrupts were enabled *very* early, fixing it\n"))
        local_irq_disable();                                                                      //检查关闭CPU中断
    
    
          /*大量初始化内容 见名知意*/
    idr_init_cache();
    rcu_init();
    tick_nohz_init();
    context_tracking_init();
    radix_tree_init();
    /* init some links before init_ISA_irqs() */
    early_irq_init();
    init_IRQ();
    tick_init();
    init_timers();
    hrtimers_init();
    softirq_init();
    timekeeping_init();
    time_init();
    sched_clock_postinit();
    perf_event_init();
    profile_init();
    call_function_init();
    WARN(!irqs_disabled(), "Interrupts were enabled early\n");
    early_boot_irqs_disabled = false;
    local_irq_enable();                                                                            //本地中断可以使用了
 
    kmem_cache_init_late();
 
    /*
     * HACK ALERT! This is early. We're enabling the console before
     * we've done PCI setups etc, and console_init() must be aware of
     * this. But we do want output early, in case something goes wrong.
     */
    console_init();                                                                            //初始化控制台,可以使用printk了
    if (panic_later)
        panic("Too many boot %s vars at `%s'", panic_later,
              panic_param);
 
    lockdep_info();
 
    /*
     * Need to run this when irqs are enabled, because it wants
     * to self-test [hard/soft]-irqs on/off lock inversion bugs
     * too:
     */
    locking_selftest();
 
#ifdef CONFIG_BLK_DEV_INITRD
    if (initrd_start && !initrd_below_start_ok &&
        page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
        pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n",
            page_to_pfn(virt_to_page((void *)initrd_start)),
            min_low_pfn);
        initrd_start = 0;
    }
#endif
    page_cgroup_init();
    debug_objects_mem_init();
    kmemleak_init();
    setup_per_cpu_pageset();
    numa_policy_init();
    if (late_time_init)
        late_time_init();
    sched_clock_init();
    calibrate_delay();
    pidmap_init();
    anon_vma_init();
    acpi_early_init();
#ifdef CONFIG_X86
    if (efi_enabled(EFI_RUNTIME_SERVICES))
        efi_enter_virtual_mode();
#endif
#ifdef CONFIG_X86_ESPFIX64
    /* Should be run before the first non-init thread is created */
    init_espfix_bsp();
#endif
    thread_info_cache_init();
    cred_init();
    fork_init(totalram_pages);                                                             //初始化fork
    proc_caches_init();
    buffer_init();
    key_init();
    security_init();
    dbg_late_init();
    vfs_caches_init(totalram_pages);                                                      //虚拟文件系统初始化
    signals_init();
    /* rootfs populating might need page-writeback */
    page_writeback_init();
#ifdef CONFIG_PROC_FS
    proc_root_init();
#endif
    cgroup_init();
    cpuset_init();
    taskstats_init_early();
    delayacct_init();
 
    check_bugs();
 
    sfi_init_late();
 
    if (efi_enabled(EFI_RUNTIME_SERVICES)) {
        efi_late_init();
        efi_free_boot_services();
    }
 
    ftrace_init();
 
    /* Do the rest non-__init'ed, we're now alive */
    rest_init();
}
函数最后调用rest_init()函数

/*最重要使命:创建kernel_init进程,并进行后续初始化*/
static noinline void __init_refok rest_init(void)
{
    int pid;
 
    rcu_scheduler_starting();
    /*
     * We need to spawn init first so that it obtains pid 1, however
     * the init task will end up wanting to create kthreads, which, if
     * we schedule it before we create kthreadd, will OOPS.
     */
    
    kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);                             //创建kernel_init进程
    
    numa_default_policy();
    pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
    rcu_read_lock();
    kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
    rcu_read_unlock();
    complete(&kthreadd_done);
 
    /*
     * The boot idle thread must execute schedule()
     * at least once to get things moving:
     */
    init_idle_bootup_task(current);
    schedule_preempt_disabled();
    /* Call into cpu_idle with preempt disabled */
    //cpu_idle就是在系统闲置时用来降低电力的使用和减少热的产生的空转函数,函数至此不再返回,其余工作从kernel_init进程处发起
    cpu_startup_entry(CPUHP_ONLINE);
}

kernel_init函数将完成设备驱动程序的初始化,并调用init_post函数启动用户进程

部分书籍介绍的内核启动流程基于经典的2.6版本,kernel_init函数还会调用init_post函数专门负责_init进程的启动,现版本已经被整合到了一起。

static int __ref kernel_init(void *unused)
{
    int ret;
 
    kernel_init_freeable();                 //该函数中完成smp开启  驱动初始化 共享内存初始化等工作
    /* need to finish all async __init code before freeing the memory */
    async_synchronize_full();
    free_initmem();                         //初始化尾声,清除内存无用数据
    mark_rodata_ro();
    system_state = SYSTEM_RUNNING;
    numa_default_policy();
 
    flush_delayed_fput();
 
    if (ramdisk_execute_command) {
        ret = run_init_process(ramdisk_execute_command);
        if (!ret)
            return 0;
        pr_err("Failed to execute %s (error %d)\n",
               ramdisk_execute_command, ret);
    }
 
    /*
     * We try each of these until one succeeds.
     *
     * The Bourne shell can be used instead of init if we are
     * trying to recover a really broken machine.
                                                          *寻找init函数,创建一号进程_init (第一个用户空间进程)*/
    if (execute_command) {
        ret = run_init_process(execute_command);
        if (!ret)
            return 0;
        pr_err("Failed to execute %s (error %d).  Attempting defaults...\n",
            execute_command, ret);
    }
    if (!try_to_run_init_process("/sbin/init") ||
        !try_to_run_init_process("/etc/init") ||
        !try_to_run_init_process("/bin/init") ||
        !try_to_run_init_process("/bin/sh"))
        return 0;
 
    panic("No working init found.  Try passing init= option to kernel. "
          "See Linux Documentation/init.txt for guidance.");
}
static int __ref kernel_init(void *unused)
{
    int ret;
 
    kernel_init_freeable();                 //该函数中完成smp开启  驱动初始化 共享内存初始化等工作
    /* need to finish all async __init code before freeing the memory */
    async_synchronize_full();
    free_initmem();                         //初始化尾声,清除内存无用数据
    mark_rodata_ro();
    system_state = SYSTEM_RUNNING;
    numa_default_policy();
 
    flush_delayed_fput();
 
    if (ramdisk_execute_command) {
        ret = run_init_process(ramdisk_execute_command);
        if (!ret)
            return 0;
        pr_err("Failed to execute %s (error %d)\n",
               ramdisk_execute_command, ret);
    }
 
    /*
     * We try each of these until one succeeds.
     *
     * The Bourne shell can be used instead of init if we are
     * trying to recover a really broken machine.
                                                          *寻找init函数,创建一号进程_init (第一个用户空间进程)*/
    if (execute_command) {
        ret = run_init_process(execute_command);
        if (!ret)
            return 0;
        pr_err("Failed to execute %s (error %d).  Attempting defaults...\n",
            execute_command, ret);
    }
    if (!try_to_run_init_process("/sbin/init") ||
        !try_to_run_init_process("/etc/init") ||
        !try_to_run_init_process("/bin/init") ||
        !try_to_run_init_process("/bin/sh"))
        return 0;
 
    panic("No working init found.  Try passing init= option to kernel. "
          "See Linux Documentation/init.txt for guidance.");
}

到此,内核初始化已经接近尾声,所有的初始化函数都已经调用,因此free_initmem函数可以舍弃内存的__init_begin至__init_end之间的数据。

当内核被引导并进行初始化后,内核启动了自己的第一个用户空间应用程序_init,这是调用的第一个使用标准C库编译的程序,其进程编号时钟为1.

_init负责出发其他必须的进程,以使系统进入整体可用的状态。

以下为内核启动流程图:


————————————————
版权声明:本文为CSDN博主「David_Hdw」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/perfect1t/article/details/81741531

上一篇:可视化数学分析软件——MATLAB R2021b for Mac中文版


下一篇:操作系统真象还原实验记录之实验三十:fork的实现,增加read、putchar、clear系统调用