最近做yolo添加注意力机制,将找到的关于注意力机制的资料集合到一起。会给出使用原文的链接,感谢各位乐于分享的博主,侵删!
CBAM
import torch
from torch import nn
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
self.relu1 = nn.ReLU()
self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) # 7,3 3,1
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
class CBAM(nn.Module):
def __init__(self, in_planes, ratio=16, kernel_size=7):
super(CBAM, self).__init__()
self.ca = ChannelAttention(in_planes, ratio)
self.sa = SpatialAttention(kernel_size)
def forward(self, x):
out = x * self.ca(x)
result = out * self.sa(out)
return result
————————————————
版权声明:本文为CSDN博主「敲代码的小风」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m0_46653437/article/details/114829275
原博主还介绍了通道、空间、SE注意力。值得一看。
SE
再写一个SE主要是这位博主给出了添加位置和条件,跟一般增加模块的位置不一样,为了直接cv。
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):
m = eval(m) if isinstance(m, str) else m # eval strings
for j, a in enumerate(args):
try:
args[j] = eval(a) if isinstance(a, str) else a # eval strings
except:
pass
n = max(round(n * gd), 1) if n > 1 else n # depth gain
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP,
DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP,
C3]:
c1, c2 = ch[f], args[0]
if c2 != no: # if not output
c2 = make_divisible(c2 * gw, 8)
args = [c1, c2, *args[1:]]
if m in [BottleneckCSP, C3]:
args.insert(2, n) # number of repeats
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum([ch[x] for x in f])
elif m is Detect:
args.append([ch[x] for x in f])
if isinstance(args[1], int): # number of anchors
args[1] = [list(range(args[1] * 2))] * len(f)
elif m is Contract:
c2 = ch[f] * args[0] ** 2
elif m is Expand:
c2 = ch[f] // args[0] ** 2
#SE添加位置
elif m is SELayer: # 这里是修改的部分
channel, re = args[0], args[1]
channel = make_divisible(channel * gw, 8) if channel != no else channel
args = [channel, re]
else:
c2 = ch[f]
版权声明:本文为CSDN博主「pprp」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/DD_PP_JJ/article/details/114098169
CoorAttention
原博主介绍了很多注意力机制,还有可以直接cv的,这里只放不重叠的CoorAttention。我也直接cv了。
# class h_sigmoid(nn.Module):
# def __init__(self, inplace=True):
# super(h_sigmoid, self).__init__()
# self.relu = nn.ReLU6(inplace=inplace)
#
# def forward(self, x):
# return self.relu(x + 3) / 6
#
#
# class h_swish(nn.Module):
# def __init__(self, inplace=True):
# super(h_swish, self).__init__()
# self.sigmoid = h_sigmoid(inplace=inplace)
#
# def forward(self, x):
# return x * self.sigmoid(x)
# class CoordAtt(nn.Module):
# def __init__(self, inp, oup, reduction=32):
# super(CoordAtt, self).__init__()
# self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
# self.pool_w = nn.AdaptiveAvgPool2d((1, None))
#
# mip = max(8, inp // reduction)
#
# self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
# self.bn1 = nn.BatchNorm2d(mip)
# self.act = h_swish()
#
# self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
# self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
#
# def forward(self, x):
# identity = x
#
# n, c, h, w = x.size()
# x_h = self.pool_h(x)
# x_w = self.pool_w(x).permute(0, 1, 3, 2)
#
# y = torch.cat([x_h, x_w], dim=2)
# y = self.conv1(y)
# y = self.bn1(y)
# y = self.act(y)
#
# x_h, x_w = torch.split(y, [h, w], dim=2)
# x_w = x_w.permute(0, 1, 3, 2)
#
# a_h = self.conv_h(x_h).sigmoid()
# a_w = self.conv_w(x_w).sigmoid()
#
# out = identity * a_w * a_h
#
# return out
版权声明:本文为CSDN博主「调参者」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/zqt321/article/details/121772854