A - ACM Computer Factory - poj 3436(最大流)

题意:有一个ACM工厂会生产一些电脑,在这个工厂里面有一些生产线,分别生产不同的零件,不过他们生产的电脑可能是一体机,所以只能一些零件加工后别的生产线才可以继续加工,比如产品A在生产线1号加工后继续前往生产线2号继续加工,直到成为完全产品。输入 P 意思是这个电脑需要P个零件,N表示有N个生产线,每个生产线都有最大加工量,并且需要什么零件和输出的是什么零件,0表示没有这个零件,1表示有这个零件,2表示有没有都可以。
样例说明:
3 4
1号: 15  
0 0 0
  -->  
0 1 0

2号: 10  
0 0 0
  -->  
0 1 1

3号: 30  
0 1 2
  -->  
1 1 1

4号: 3   
0 2 1
  -->  
1 1 1

1号生产线需要0 0 0这样的零件(这样的零件也就是无限制零件,源点),它可以把零件加工成 0 1 0 这个样子,然后 3 号生产线可以接受这种零件,并且加工成 1 1 1 也就是成品,到这样也就加工成功了,因为1号生产线每次可以加工 15 个零件,所以1->3的加工量就是 15,同理 2->3的加工量是 10,所以结果是 25。


分析:很明显的网络流题目,感觉难点应该在题目阅读和建图上.....可以用0当做源点 N+1当做汇点,然后每两点都进行匹配一些,看看是否可以连接,路径的权值为出点的生产能力。


注意:因为每个生产线的生产能力有限,所以需要拆点,防止超出他的生产能力,比如下图如果不拆点结果就会使20,实际上是10

A - ACM Computer Factory - poj 3436(最大流)
还有一定一定要注意的输入输出没有 


Sample output 1” “



Sample output 1


”!!!!就是这个坑我错了好多次


/**************************分割线**************分割线**************************************/

#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std; const int MAXN = ;
const int oo = 1e9+; int G[MAXN][MAXN], layer[MAXN], G1[MAXN][MAXN];
int P, N;///需要P个零件,N条生产线
///表示生产线,需要的零件in,输出的零件out,最大生产值Flow
struct node{int in[MAXN], out[MAXN], Flow;}a[MAXN]; void InIt()
{
    memset(G, false, sizeof(G));
    memset(G1, false, sizeof(G1));     for(int i=; i<=P; i++)
    {
        a[].out[i] = ;
        a[].in[i] = ;
        a[N+].in[i] = ;
        a[N+].out[i] = ;
    }
    a[].Flow = oo;
    a[N+].Flow = oo;
}
bool canLink(node n1, node n2)
{///n1输出的零件是否是n2需要的
    for(int i=; i<=P; i++)
    {
        if(n1.out[i] != n2.in[i] && n2.in[i] != )
            return false;
    }     return true;
}
bool bfs(int start, int End)
{
    int used[MAXN] = {};
    queue<int> Q;Q.push(start);
    memset(layer, -, sizeof(layer));
    used[start] = true, layer[start] = ;     while(Q.size())
    {
        int u = Q.front();Q.pop();         if(u == End)return true;         for(int i=; i<=End; i++)
        {
            if(G[u][i] && !used[i])
            {
                used[i] = true;
                layer[i] = layer[u] + ;
                Q.push(i);
            }
        }
    }     return false;
}
int dfs(int u, int MaxFlow, int End)
{
    if(u == End)return MaxFlow;     int uFlow = ;     for(int i=; i<=End; i++)
    {
        if(layer[u]+==layer[i] && G[u][i])
        {
            int flow = min(MaxFlow-uFlow, G[u][i]);
            flow = dfs(i, flow, End);             G[u][i] -= flow;
            G[i][u] += flow;
            uFlow += flow;             if(uFlow == MaxFlow)
                break;
        }
    }     return uFlow;
}
int dinic(int start, int End)
{
    int MaxFlow = ;     while(bfs(start, End) == true)
        MaxFlow += dfs(start, oo, End);     return MaxFlow;
} int main()
{
    while(scanf("%d%d", &P, &N) != EOF)
    {
        int i, j;         InIt();         for(i=; i<=N+; i++)
        {
            scanf("%d", &a[i].Flow);
            for(j=; j<=P; j++)
                scanf("%d", &a[i].in[j]);
            for(j=; j<=P; j++)
                scanf("%d", &a[i].out[j]);
        }         N+=;         for(i=; i<=N; i++)
        for(j=; j<=N; j++)
        {
            if(i == j)
            {
                G1[i][j+N] = G[i][j+N] = a[i].Flow;
            }
            else if(i!=j && canLink(a[i], a[j]) == true)
            {
                G1[i+N][j] = G[i+N][j] = a[i].Flow;
            }
        }         int MaxFlow = dinic(, N*);
        int k=, x[MAXN], y[MAXN], flow[MAXN];         for(i=; i<N; i++)
        for(j=; j<N; j++)
        {
            if(G[i+N][j] < G1[i+N][j])
            {
                x[k] = i;
                y[k] = j;
                flow[k++] = G1[i+N][j] - G[i+N][j];
            }
        }         printf("%d %d\n", MaxFlow, k);
        for(i=; i<k; i++)
            printf("%d %d %d\n", x[i]-, y[i]-, flow[i]);
    }     return ;
}
/**
输入 3 5
10  0 0 0  0 1 0
10  0 0 0  0 1 0
10  0 1 0  0 1 1
10  0 1 1  1 1 1
10  0 1 1  1 1 1 输出 10 2
1 3 10
3 4 10 **/
上一篇:Ubuntu 更改屏幕分辨率


下一篇:马赛克算法及iOS代码实现