吴恩达深度学习编程作业 pytorch 版rnn时间序列

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch

from torch import nn
from torch.autograd import Variable
#定义模型
'''
input_size – 输入的特征维度
hidden_size – 隐状态的特征维度
num_layers – 层数(和时序展开要区分开)
'''
class lstm_reg(nn.Module):
     def __init__(self, input_size, hidden_size, output_size=5, num_layers=1):
          super(lstm_reg, self).__init__()
          
          self.rnn = nn.LSTM(input_size,     
            hidden_size,     # rnn hidden unit
            num_layers,       # 有几层 RNN layers
            batch_first=True, )
          
          self.out = nn.Linear(hidden_size, output_size)
          
     def forward(self,x):
        
        r_out, (h_n, h_c) = self.rnn(x, None) 

        out = self.out(r_out[:, -1, :])
        
        return out

def get_data(look_back,output_size):
    df = pd.read_csv('../你的文件.csv',encoding='gbk')
    df= df[['date','value']]
    df['date'] = pd.to_datetime(df['date'])
    df = df.sort_values(by=['date']).reset_index()[['date','value']]
    
    df = df[['value']]#.values.astype('float32')
    max_value = np.max(df['value'].values)
    min_value = np.min(df['value'].values)
    scalar = max_value - min_value
    dataset = list(map(lambda x: (x-min_value)/scalar, df['value'].values))#数据先归一化
    dataX, dataY = [], []
    for i in range(len(dataset) - look_back - output_size):
        a = dataset[i:(i + look_back)]
        dataX.append(a)
        dataY.append(dataset[(i + look_back):(i+look_back+output_size)])
    dataX, dataY = np.array(dataX), np.array(dataY)
    
    train_size = round(len(dataX)*0.7)-1
    train_x,train_y,test_x,test_y = np.array(dataX[:train_size]),np.array(dataY[:train_size]),np.array(dataX[train_size:]),np.array(dataY[train_size:])
    return train_x,train_y,test_x,test_y,min_value,scalar

def model(EPOCH = 10000,BATCH_SIZE = 20,time_step=100,
  hidden_size=15,lambd = 0.0001,lr=0.0009,num_layers=10,output_size=5):
     
    
    train_x,train_y,test_x,test_y,min_value,scalar = get_data(time_step,output_size)
    
    train_x = train_x.reshape(-1, time_step,1)
    train_y = train_y.reshape(-1,output_size)
    test_x = test_x.reshape(-1, time_step,1)
    test_y = test_y.reshape(-1,output_size)
    train_x = torch.from_numpy(train_x)
    train_y = torch.from_numpy(train_y)
    test_x = torch.from_numpy(test_x)
    
    
    net = lstm_reg(1, hidden_size,num_layers=num_layers,output_size=output_size)

    criterion = nn.MSELoss()#均方误差
    
    optimizer = torch.optim.Adam(net.parameters(),weight_decay=lambd,lr=lr)#Adam梯度下降法,学习率选择
    #开始训练
    for epoch in range(EPOCH):
        for i in range(0,len(train_x),BATCH_SIZE):
            var_x = train_x[i:i+BATCH_SIZE]
            
            var_y = train_y[i:i+BATCH_SIZE]
            
             
            out = net(var_x.float())#前向传播
            
            loss = criterion(out, var_y.float())#误差

            #输出测试集合的预测和误差
            test_out = net(test_x.float())
            test_loss = criterion(test_out,torch.from_numpy(test_y).float())
            optimizer.zero_grad()#反向传播
            loss.backward()
            optimizer.step()
            if epoch%10==0:
                print('Epoch:{}, Loss:{:.5f}   test_Loss:{:.5f}'.format(epoch, loss.item(),test_loss.item()))
                               
    #保存
    torch.save(net,'./多层模型测试.tar')
    #加载
    #net = torch.load('./test1.tar') 
    
    #预测一下train_x
    train_y_hat = net(train_x.float()).data.numpy().reshape(-1,output_size)
    train_y_hat_restore =  train_y_hat*scalar+min_value 
    train_y_restore  = (train_y*scalar+min_value ).data.numpy().reshape(-1,output_size)
    # print('train预测:',train_y_hat_restore)
    # print('train实际:',train_y_restore) 
    test_y_out = net(test_x.float())
    test_y_loss = criterion(test_y_out,torch.from_numpy(test_y).float())
    print('验证误差:',test_y_loss)
    test_y_hat = test_y_out.data.numpy().reshape(-1,output_size)
    test_y_hat_restore =  test_y_hat*scalar+min_value 
    test_y_restore  = test_y.reshape(-1,output_size)*scalar+min_value 
    # print('test预测:',test_y_hat_restore)
    # print('test实际:',test_y_restore) 
    minus =test_y_hat_restore-test_y_restore
    #print('实际误差:',type(minus))
    df = pd.DataFrame({'y':list(test_y_restore.reshape(-1))
        ,'yhat':list(test_y_hat_restore.reshape(-1))
        ,'minus':list(minus.reshape(-1))})
    print(df)
    print('验证后真实数据mse:',np.mean(minus**2))
    df.to_csv('./rnn的测试集结果4.csv')
    # plt.plot(train_y_hat_restore, 'g', label='train_prediction')
    # plt.plot(train_y_restore, 'b', label='train_real')
    # plt.plot(test_y_hat_restore, 'r', label='test_prediction')
    # plt.plot(test_y_restore, 'tan', label='test_real')
    # plt.plot(minus, 'dimgray', label='minus')
    # plt.legend(loc='best')

    # plt.show()

    





if __name__ == "__main__":
    model()

上一篇:如何从/ var / lib / mysql恢复数据库


下一篇:rman 还原归档日志(restore archivelog)