RocketMQ-broker状态管理及数据统计
在RocketMQ中,状态管理有BrokerStatsManager,ConsumerStatsManager,FilterServerStatsManager,其实现的方式都是一样的。
这边就拿BrokerStatsManager做介绍
一个StatsItemSet,代表着一项数据统计指标,这个指标定义了各个key的统计单项StatsItem,具体的值和次数使用原子类表示
BrokerStatsManager支持这些统一指标,同时每一个指标对应一个StateItemSet,里面包含了各个topic和group的信息
public static final String TOPIC_PUT_NUMS = "TOPIC_PUT_NUMS"; public static final String TOPIC_PUT_SIZE = "TOPIC_PUT_SIZE"; public static final String GROUP_GET_NUMS = "GROUP_GET_NUMS"; public static final String GROUP_GET_SIZE = "GROUP_GET_SIZE"; public static final String SNDBCK_PUT_NUMS = "SNDBCK_PUT_NUMS"; public static final String BROKER_PUT_NUMS = "BROKER_PUT_NUMS"; public static final String BROKER_GET_NUMS = "BROKER_GET_NUMS"; public static final String GROUP_GET_FROM_DISK_NUMS = "GROUP_GET_FROM_DISK_NUMS"; public static final String GROUP_GET_FROM_DISK_SIZE = "GROUP_GET_FROM_DISK_SIZE"; public static final String BROKER_GET_FROM_DISK_NUMS = "BROKER_GET_FROM_DISK_NUMS"; public static final String BROKER_GET_FROM_DISK_SIZE = "BROKER_GET_FROM_DISK_SIZE"; // For commercial public static final String COMMERCIAL_SEND_TIMES = "COMMERCIAL_SEND_TIMES"; public static final String COMMERCIAL_SNDBCK_TIMES = "COMMERCIAL_SNDBCK_TIMES"; public static final String COMMERCIAL_RCV_TIMES = "COMMERCIAL_RCV_TIMES"; public static final String COMMERCIAL_RCV_EPOLLS = "COMMERCIAL_RCV_EPOLLS"; public static final String COMMERCIAL_SEND_SIZE = "COMMERCIAL_SEND_SIZE"; public static final String COMMERCIAL_RCV_SIZE = "COMMERCIAL_RCV_SIZE"; public static final String COMMERCIAL_PERM_FAILURES = "COMMERCIAL_PERM_FAILURES"; this.statsTable.put(TOPIC_PUT_NUMS, new StatsItemSet(TOPIC_PUT_NUMS, this.scheduledExecutorService, log)); this.statsTable.put(TOPIC_PUT_SIZE, new StatsItemSet(TOPIC_PUT_SIZE, this.scheduledExecutorService, log)); this.statsTable.put(GROUP_GET_NUMS, new StatsItemSet(GROUP_GET_NUMS, this.scheduledExecutorService, log)); this.statsTable.put(GROUP_GET_SIZE, new StatsItemSet(GROUP_GET_SIZE, this.scheduledExecutorService, log)); this.statsTable.put(GROUP_GET_LATENCY, new StatsItemSet(GROUP_GET_LATENCY, this.scheduledExecutorService, log)); this.statsTable.put(SNDBCK_PUT_NUMS, new StatsItemSet(SNDBCK_PUT_NUMS, this.scheduledExecutorService, log)); this.statsTable.put(BROKER_PUT_NUMS, new StatsItemSet(BROKER_PUT_NUMS, this.scheduledExecutorService, log)); this.statsTable.put(BROKER_GET_NUMS, new StatsItemSet(BROKER_GET_NUMS, this.scheduledExecutorService, log)); this.statsTable.put(GROUP_GET_FROM_DISK_NUMS, new StatsItemSet(GROUP_GET_FROM_DISK_NUMS, this.scheduledExecutorService, log)); this.statsTable.put(GROUP_GET_FROM_DISK_SIZE, new StatsItemSet(GROUP_GET_FROM_DISK_SIZE, this.scheduledExecutorService, log)); this.statsTable.put(BROKER_GET_FROM_DISK_NUMS, new StatsItemSet(BROKER_GET_FROM_DISK_NUMS, this.scheduledExecutorService, log)); this.statsTable.put(BROKER_GET_FROM_DISK_SIZE, new StatsItemSet(BROKER_GET_FROM_DISK_SIZE, this.scheduledExecutorService, log)); this.statsTable.put(COMMERCIAL_SEND_TIMES, new StatsItemSet(COMMERCIAL_SEND_TIMES, this.commercialExecutor, COMMERCIAL_LOG)); this.statsTable.put(COMMERCIAL_RCV_TIMES, new StatsItemSet(COMMERCIAL_RCV_TIMES, this.commercialExecutor, COMMERCIAL_LOG)); this.statsTable.put(COMMERCIAL_SEND_SIZE, new StatsItemSet(COMMERCIAL_SEND_SIZE, this.commercialExecutor, COMMERCIAL_LOG)); this.statsTable.put(COMMERCIAL_RCV_SIZE, new StatsItemSet(COMMERCIAL_RCV_SIZE, this.commercialExecutor, COMMERCIAL_LOG)); this.statsTable.put(COMMERCIAL_RCV_EPOLLS, new StatsItemSet(COMMERCIAL_RCV_EPOLLS, this.commercialExecutor, COMMERCIAL_LOG)); this.statsTable.put(COMMERCIAL_SNDBCK_TIMES, new StatsItemSet(COMMERCIAL_SNDBCK_TIMES, this.commercialExecutor, COMMERCIAL_LOG)); this.statsTable.put(COMMERCIAL_PERM_FAILURES, new StatsItemSet(COMMERCIAL_PERM_FAILURES, this.commercialExecutor, COMMERCIAL_LOG));
最后这些指标都会保存在 private final HashMap<String, StatsItemSet> statsTable = new HashMap<String, StatsItemSet>();
一个指标StatsItemSet里面有如下属性
private final ConcurrentMap<String/* key */, StatsItem> statsItemTable = new ConcurrentHashMap<String, StatsItem>(128); private final String statsName; private final ScheduledExecutorService scheduledExecutorService; private final Logger log;
比如一个TOPIC_PUT_NUMS的指标,在其statsItemTable 包含了各个topic的message数量和存放次数。其中key就是topic。
然后会初始化一些定时任务,比如会在每隔10s把当前的状态封装之后放在csListMinute,最多放6个统计记录,然后在一分钟内打印结果,格式如下
"TOPIC_PUT_NUMS [topicname] Stats In One Minute, SUM: %d TPS: %.2f AVGPT: %.2
再次之前会进行简单计算代码如下
private static StatsSnapshot computeStatsData(final LinkedList<CallSnapshot> csList) { StatsSnapshot statsSnapshot = new StatsSnapshot(); synchronized (csList) { double tps = 0; double avgpt = 0; long sum = 0; if (!csList.isEmpty()) { CallSnapshot first = csList.getFirst(); CallSnapshot last = csList.getLast(); // 比如统计前后的值差距 sum = last.getValue() - first.getValue(); // last.getTimestamp() - first.getTimestamp()代表的是统计的时候时间差 tps = (sum * 1000.0d) / (last.getTimestamp() - first.getTimestamp()); // 次数差距 long timesDiff = last.getTimes() - first.getTimes(); if (timesDiff > 0) { // 平均每次的达到的数量级 ,在TOPIC_PUT_NUMS中表示 每次在在该topic中平均写入avgpt个message avgpt = (sum * 1.0d) / timesDiff; } } statsSnapshot.setSum(sum); statsSnapshot.setTps(tps); statsSnapshot.setAvgpt(avgpt); } return statsSnapshot; }
每隔一小时,一天的统计结果处理逻辑雷同。