Java编程手冊-Collection框架(下)

建议先看Java编程手冊-Collection框架(上)

5.  Set<E>接口与实现

Set<E>接口表示一个数学的集合,它不同意元素的反复,仅仅能包括一个null元素。

Java编程手冊-Collection框架(下)

Set<E>接口声明了以下抽象方法。

boolean add(E o)           // add the specified element if it is not already present
boolean remove(Object o) // remove the specified element if it is present
boolean contains(Object o) // return true if it contains o // Set operations
boolean addAll(Collection<? extends E> c) // Set union
boolean retainAll(Collection<?> c) // Set intersection

Set<E>接口的实现类包含:

  • HashSet<E>:在一个哈希表中存储元素(哈希值通过hashcode()产生),HashSet是Set的全面实现。
  • LinkedHashSet<E>:存储元素在一个哈希链表中,因此它有更高的插入删除效率。
  • TreeSet<E>: 它也实现了子接口NavigableSet 和 SortedSet,存储元素在一个红黑树的数据结构中,它的搜索、加入、删除效率非常高,时间复杂度为O(log(n)
5.1  HashSet<E>的样例
以下写了一个Book类而且写了一个Book的集合。
public class Book {
private int id;
private String title; // Constructor
public Book(int id, String title) {
this.id = id;
this.title = title;
} @Override
public String toString() {
return id + ": " + title;
} // Two book are equal if they have the same id
@Override
public boolean equals(Object o) {
if (!(o instanceof Book)) {
return false;
}
return this.id == ((Book)o).id;
} // Consistent with equals(). Two objects which are equal have the same hash code.
@Override
public int hashCode() {
return id;
}
}

我们须要提供equals()方法。这样实现Set的集合能够验证元素的相等性和反复性,比如,我们选用id来区分不同的对象元素。这样我们实现的equals()方法就是假设两个对象的id同样。那么就返回true。另外。我们也须要又一次hashCode()方法来保持它也equals()的一致性。

关于equals()和hashCode()的关联能够參考文章:Effective
Java——对全部对象通用的方法

import java.util.HashSet;
import java.util.Set;
public class TestHashSet {
public static void main(String[] args) {
Book book1 = new Book(1, "Java for Dummies");
Book book1Dup = new Book(1, "Java for the Dummies"); // same id as above
Book book2 = new Book(2, "Java for more Dummies");
Book book3 = new Book(3, "more Java for more Dummies"); Set<Book> set1 = new HashSet<Book>();
set1.add(book1);
set1.add(book1Dup); // duplicate id, not added
set1.add(book1); // added twice, not added
set1.add(book3);
set1.add(null); // Set can contain a null
set1.add(null); // but no duplicate
set1.add(book2);
System.out.println(set1); // [null, 1: Java for Dummies,
// 2: Java for more Dummies, 3: more Java for more Dummies] set1.remove(book1);
set1.remove(book3);
System.out.println(set1); // [null, 2: Java for more Dummies] Set<Book> set2 = new HashSet<Book>();
set2.add(book3);
System.out.println(set2); // [3: more Java for more Dummies]
set2.addAll(set1); // "union" with set1
System.out.println(set2); // [null, 2: Java for more Dummies, 3: more Java for more Dummies] set2.remove(null);
System.out.println(set2); // [2: Java for more Dummies, 3: more Java for more Dummies]
set2.retainAll(set1); // "intersection" with set1
System.out.println(set2); // [2: Java for more Dummies]
}
}

一个Set不能存放反复的元素,检查元素的反复性就是通过重写的equal()方法来检查的。

另外一个Set中仅仅能存放一个null元素。

addAll()是否是将两个Set联合,retainAll()是取两个Set的交集。


须要注意的是Set中元素的排序是随意的,并非插入的顺序。

5.2  LinkedHashSet<E>的样例
不像HashSet。LinkedHashSet<E>构建的是一个基于哈希表的链表,主要是为了更好的插入和删除效率。另外,它里面元素的顺序维持的就是插入的顺序(比如:add()方法)。
import java.util.LinkedHashSet;
import java.util.Set;
public class TestLinkedHashSet {
public static void main(String[] args) {
Book book1 = new Book(1, "Java for Dummies");
Book book1Dup = new Book(1, "Java for the Dummies"); // same id as above
Book book2 = new Book(2, "Java for more Dummies");
Book book3 = new Book(3, "more Java for more Dummies"); Set<Book> set = new LinkedHashSet<Book>();
set.add(book1);
set.add(book1Dup); // duplicate id, not added
set.add(book1); // added twice, not added
set.add(book3);
set.add(null); // Set can contain a null
set.add(null); // but no duplicate
set.add(book2);
System.out.println(set); // [1: Java for Dummies, 3: more Java for more Dummies,
// null, 2: Java for more Dummies]
}
}

能够看到,Set的输出的顺序跟add()加入的顺序是一致的。


5.3  NavigableSet<E> & SortedSet<E>接口
SortedSet<E>在元素add()的过程中会进行排序。排序策略使用的是Comparable的实现或者提供的Comparator对象。
NavigableSet<E>是Set的子接口,它提供了一些额外的方法。
Iterator<E> descendingIterator()  // Returns an iterator over the elements in this set,
// in descending order.
Iterator<E> iterator() // Returns an iterator over the elements in this set, in ascending order. // Per-element operation
E floor(E e) // Returns the greatest element in this set less than or equal to the given element,
// or null if there is no such element.
E ceiling(E e) // Returns the least element in this set greater than or equal to the given element,
// or null if there is no such element.
E lower(E e) // Returns the greatest element in this set strictly less than the given element,
// or null if there is no such element.
E higher(E e) // Returns the least element in this set strictly greater than the given element,
// or null if there is no such element. // Subset operation
SortedSet<E> headSet(E toElement) // Returns a view of the portion of this set
// whose elements are strictly less than toElement.
SortedSet<E> tailSet(E fromElement) // Returns a view of the portion of this set
// whose elements are greater than or equal to fromElement.
SortedSet<E> subSet(E fromElement, E toElement)
// Returns a view of the portion of this set
// whose elements range from fromElement, inclusive, to toElement, exclusive.

5.4
 TreeSet<E>样例

TreeSet<E>是NavigableSet<E> 和 SortedSet<E>的实现.
样例——实现Comparable的TreeSet
public class AddressBookEntry implements Comparable<AddressBookEntry> {
private String name, address, phone; public AddressBookEntry(String name) {
this.name = name;
} @Override
public String toString() {
return name;
} @Override
public int compareTo(AddressBookEntry another) {
return this.name.compareToIgnoreCase(another.name);
} @Override
public boolean equals(Object o) {
if (!(o instanceof AddressBookEntry)) {
return false;
}
return this.name.equalsIgnoreCase(((AddressBookEntry)o).name);
} @Override
public int hashCode() {
return name.length();
}
}

AddressBookEntry实现了Comparable接口,为了在TreeSet中进行使用,它重写了 compareTo() 方法去比較name。它同一时候也又一次了equals()和hashCode()方法,主要为了保持跟compareTo() 的一致性。

import java.util.TreeSet;

public class TestTreeSetComparable {
public static void main(String[] args) {
AddressBookEntry addr1 = new AddressBookEntry("peter");
AddressBookEntry addr2 = new AddressBookEntry("PAUL");
AddressBookEntry addr3 = new AddressBookEntry("Patrick"); TreeSet<AddressBookEntry> set = new TreeSet<AddressBookEntry>();
set.add(addr1);
set.add(addr2);
set.add(addr3);
System.out.println(set); // [Patrick, PAUL, peter] System.out.println(set.floor(addr2)); // PAUL
System.out.println(set.lower(addr2)); // Patrick
System.out.println(set.headSet(addr2)); // [Patrick]
System.out.println(set.tailSet(addr2)); // [PAUL, peter]
}
}

能够看到AddressBookEntry对象在add()操作过程中进行了排序,使用的就是Comparable实现的方法。


样例——实现Comparator的TreeSet
以下我们来又一次上面的样例,这次使用的是Comparator对象来实现对象的比較。
public class PhoneBookEntry {
public String name, address, phone; public PhoneBookEntry(String name) {
this.name = name;
} @Override
public String toString() {
return name;
}
}

上面的PhoneBookEntry并没有实现Comparator,我们这里是单独定义一个Comparator实例,使用这个实例来创建TreeSet。

import java.util.Set;
import java.util.TreeSet;
import java.util.Comparator; public class TestTreeSetComparator {
public static class PhoneBookComparator implements Comparator<PhoneBookEntry> {
@Override
public int compare(PhoneBookEntry p1, PhoneBookEntry p2) {
return p2.name.compareToIgnoreCase(p1.name); // descending name
}
} public static void main(String[] args) {
PhoneBookEntry addr1 = new PhoneBookEntry("peter");
PhoneBookEntry addr2 = new PhoneBookEntry("PAUL");
PhoneBookEntry addr3 = new PhoneBookEntry("Patrick"); Comparator<PhoneBookEntry> comp = new PhoneBookComparator();
TreeSet<PhoneBookEntry> set = new TreeSet<PhoneBookEntry>(comp);
set.add(addr1);
set.add(addr2);
set.add(addr3);
System.out.println(set); // [peter, PAUL, Patrick] Set<PhoneBookEntry> newSet = set.descendingSet(); // Reverse the order
System.out.println(newSet); // [Patrick, PAUL, peter]
}
}

上面我们创建了一个带有BookComparator实例的TreeSet。这样上面Set中对象的比較使用的就是BookComparator的compare方法,在上面样例中。调用TreeSet的descendingSet()方法来是集合倒序。


6.  Queue<E>接口与实现
Queue中的元素是以一种特定的顺序进行加入和删除。比如典型的先入先出。deque是一个双向队列。它的元素的加入和删除能够在两端进行。
Java编程手冊-Collection框架(下)
在Collection<E>操作之外,Queue<E> 也额外加入了插入、获取、查看的操作方法,每一个方法都提供了两种形式:一个是假设操作失败会抛出异常,另外一个假设操作是否会返回一个值(false或者null,据详细操作而定)。
// Insertion at the end of the queue
boolean add(E e) // throws IllegalStateException if no space is currently available
boolean offer(E e) // returns true if the element was added to this queue, else false // Extract element at the head of the queue
E remove() // throws NoSuchElementException if this queue is empty
E poll() // returns the head of this queue, or null if this queue is empty // Inspection (retrieve the element at the head, but does not remove)
E element() // throws NoSuchElementException if this queue is empty
E peek() // returns the head of this queue, or null if this queue is empty

Deque<E>也提供了额外的方法来操作队列的两端

// Insertion
void addFirst(E e)
void addLast(E e)
boolean offerFirst(E e)
boolean offerLast(E e) // Retrieve and Remove
E removeFirst()
E removeLast()
E pollFirst()
E pollLast() // Retrieve but does not remove
E getFirst()
E getLast()
E peekFirst()
E peekLast()

一个Deque能够看做是一个FIFO对象(通过add(e)remove()element()offer(e)poll()peek()方法)。也能够看做是一个LIFO队列(通过push(e)pop()peek()方法)。

Queue<E> 和 Deque<E>的实现类例如以下:
  • PriorityQueue<E>:
    这个队列能够使用一个指定的顺序去进行排序,而不是FIFO的顺序。
  • ArrayDeque<E>:
    使用queue或者deque来实现的动态数组,类似于ArrayList<E>。
  • LinkedList<E>:
    它在实现List<E>接口的基础上,也实现了Queue<E> 和 Deque<E>接口,它是双向链表结构。

7.  Map<K,V>接口与实现
Map集合相应的是一个键值对。每一个key相应一个value,键值不同意反复,value是同意反复的。它跟线性数组有些同样,不同的是它使用key来进行索引訪问相应的value,所以map使用使用随意的key。
Java编程手冊-Collection框架(下)
 Map<K,V>接口声明了以下抽象方法。
V get(Object key)      // Returns the value of the specified key
V put(K key, V value) // Associate the specified value with the specified key
boolean containsKey(Object key) // Is this map has specified key?
boolean containsValue(Object value) // Views
Set<K> keySet() // Returns a set view of the keys
Collection<V> values() // Returns a collection view of the values
Set entrySet() // Returns a set view of the key-value

Map<K,V>接口的实现类包含:

  • HashMap<K,V>:HashMap实现了Map<K,V>。而且是Map全面的实现,可是HashMap的方法不是同步的,也就是线程不安全。
  • TreeMap<K,V>:实现了SortedMap<K,V>接口的红黑树。
  • LinkedHashMap<K,V>:带有链表的哈希表,方便插入和删除
  • Hashtable<K,V>:它是对Map<K,V>方法的同步实现。也就是它是线程安全的。另外它不同意key和value为null。
样例:
HashMap<String, String> aMap = new HashMap<String, String>();
aMap.put("1", "Monday");
aMap.put("2", "Tuesday");
aMap.put("3", "Wednesday"); String str1 = aMap.get("1"); // No need downcast
System.out.println(str1);
String str2 = aMap.get("2");
System.out.println(str2);
String str3 = aMap.get("3");
System.out.println(str3); Set<String> keys = aMap.keySet();
for (String str : keys) {
System.out.print(str);
System.out.print(":");
System.out.println(aMap.get(str));
}

样例——HashMap

// Counts the frequency of each of the words in a file given in the command-line,
// and saves in a map of {word, freq}.
import java.util.Map;
import java.util.HashMap;
import java.util.Scanner;
import java.io.File; public class WordCount {
public static void main(String[] args) throws Exception {
Scanner in = new Scanner(new File(args[0])); Map<String, Integer> map = new HashMap<String, Integer>();
while (in.hasNext()) {
String word = in.next();
int freq = (map.get(word) == null) ? 1 : map.get(word) + 1; // type-safe
map.put(word, freq); // autobox int to Integer and upcast, type-check
}
System.out.println(map);
}
}

8. 算法

Collection框架提供了两个工具类:java.util.Arrays 和 java.util.Collections,它们提供了一些主要的算法。比如插入和查找等等。
另外须要注意的是Collections是工具类,Collection是集合框架的接口。

8.1
 java.util.Arrays工具类

java.util.Arrays包括了非常多的静态方法来对数组进行排序或者查找等等操作。
Array是Java中的引用类型,它能够包括基本数据类型,也能够包括对象数据类型。Java中的数组能够包括9种数据类型,byteshortintlongfloatdoublecharboolean和对象类型。



Sorting - Arrays.sort()

对除boolean类型之外的基本数据类型以及对象类型的数据进行排序。比如int[]数组:
// Sort the given array into ascending order
public static void sort(int[] a)
// Sort between fromIndex (inclusive) and toTodex (exclusive)
public static void sort(int[] a, int fromIndex, int toIndex)

同理。sort()可用于byte[]short[]long[]float[]double[]char[] (除 boolean[]外)
and Object[]中。相应Object[],对象必须实现Comparable接口的compareTo()方法。

public static void sort(Object[] a)
public static void sort(Object[] a, int fromIndex, int toIndex)

对于泛型对象的排序。通过提供Comparator对象来实现排序。

public static <T> void sort(T[] a, Comparator<? super T> c)
public static <T> void sort(T[] a, int fromIndex, int toIndex, Comparator<? super T> c)

如果你想对一个Integer数组进行排序,也就是T为Integer,你能够实现一个Comparator<Integer>或者Comparator<Number>或者Comparator<Object>实例来提供给sort方法,Object and Number都是Integer的超类。


Searching - Arrays.binarySearch()
同理。也有对于全部基本数据类型或者对象类型查找的方法。在运行binarySearch() 运行对数组须要进行排序。
public static int binarySearch(int[] a, int key)
public static int binarySearch(int[] a, int fromIndex, int toIndex, int key)
// Similar methods for byte[], short[], long[], float[], double[] and char[] // Searching objects, which implements Comparable
public static int binarySearch(Object[] a, Object key)
public static int binarySearch(Object[] a, int fromIndex, int toIndex, Object key)
// Searching generic objects, based on the given Comparator
public static <T> int binarySearch(T[] a, T key, Comparator<? super T> c)
public static <T> int binarySearch(T[] a, T key, int fromIndex, int toIndex, Comparator<? super T> c)


Equality Comparison - Arrays.equals()
public static boolean equals(int[] a1, int[] a2)
// Similar methods for byte[], short[], long[], float[], double[], char[], boolean[] and Object[]


Copying - Arrays.copyOf() 和 Arrays.copyOfRange()
public static int[] copyOf(int[] original, int newLength)
// Copies the given array, truncating or padding with zeros (if necessary) so the copy has the specified length
public static int[] copyOfRange(int[] original, int from, int to)
// padded with 0 if to is beyond the length // Similar methods for byte[], short[], long[], float[], double[], char[] and boolean[] public static <T> T[] copyOf(T[] original, int newLength)
public static <T> T[] copyOfRange(T[] original, int from, int to)
public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType)
public static <T,U> T[] copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType)

Filling - Arrays.fill()
public static void fill(int[] a, int value)
public static void fill(int[] a, int fromIndex, int toIndex, int value)
// Similar methods for byte[], short[], long[], float[], double[], char[] and boolean[] and Object[]

Description - Arrays.toString()
// Returns a string representation of the contents of the specified array.
public static String toString(int[] a)
// Similar methods for byte[], short[], long[], float[], double[], char[] and boolean[] and Object[]


转换为List - Arrays.asList()
// Returns a fixed-size list backed by the specified array.
// Change to the list write-thru to the array.
public static <T> List<T> asList(T[] a)

8.2  java.util.Collections工具类

跟java.util.Arrays一样。java.util.Collections也提供了静态的方法来对集合进行操作。、


Sorting
- Collections.sort()
// Sorts the specified list into ascending order. The objects shall implement Comparable.
public static <T extends Comparable<? super T>> void sort(List<T> list)
// Sorts the specified list according to the order induced by the specified comparator.
public static <T> void sort(List<T> list, Comparator<? super T> c)

须要注意的是Collections.sort()仅仅能用在List上面。不能使用在SetQueue 和 Map上,SortedSet (TreeSet)
和 SortedMap(TreeMap)能够自己主动排序。




Searching - Collections.binarySearch()

在使用binarySearch()之前,List必须进行排序。
public static <T> int binarySearch(List<? extends Comparable<? super T>> list, T key)
public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c)


最大和最小 - Collections.max() & Collections.min()
// Returns the maximum/minimum element of the given collection, according to the natural ordering of its elements.
public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> c)
public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> c) // Returns the maximum/minimum element of the given collection, according to the order induced by the specified comparator.
public static <T> T max(Collection<? extends T> c, Comparator<? super T> comp)
public static <T> T min(Collection<? extends T> c, Comparator<? super T> comp)

Synchronized Collection, List, Set & Map

非常多的Collection的实现类都不是同步的,比如ArrayListHashSet 和  HashMap ,也就是它们不是线程安全的,除了Vector 和 HashTable是同步的,假设我们不想使用Vector 和 HashTable,我们能够通过静态的 Collections.synchronizedXxx() 创建同步的CollectionListSetSortedSetMap 和 SortedMap。

// Returns a synchronized (thread-safe) collection backed by the specified collection.
public static <T> Collection<T> synchronizedCollection(Collection<T> c) // Others
public static <T> List<T> synchronizedList(List<T> list)
public static <T> Set<T> synchronizedSet(Set<T> set)
public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> set)
public static <K,V> Map<K,V> synchronizedMap(Map<K,V> map)
public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> map)

对于上面方法返回的对象,在遍历的时候。必须包括在synchronize块中。

List lst = Collections.synchronizedList(new ArrayList());
......
synchronized(lst) { // must be enclosed in a synchronized block
Iterator iter = lst.iterator();
while (iter.hasNext())
iter.next();
......
}

原文链接:Java Programming Tutorial The Collection Framework


上一篇:iframe和form表单的target应用简单例子


下一篇:Java核心技术点之集合框架