聪聪和可可鸽了两天
\(dijkstra\)预处理出来两点之间的最短路径\(dis\)数组,读题发现,\(cat\)的走位很怪sb斩了,所以我们设一个\(next\)数组,\(next[i][j]\)表示\(cat\)在\(i\)位置,\(mouse\)在\(j\)位置时,\(cat\)下一步要去的位置,
设\(i\),\(j\)之间有一条边则
考虑答案的转移,设\(u\)为\(cat\)当前所在的位置,\(v\)为\(mouse\)当前所在的位置,\(a\)为\(cat\)走一步所到的位置,\(b\)为\(cat\)走两步所到的位置,\(to\)为\(mouse\)可到达的位置最后记得算上一开始的v,\(du\)数组为该点的出度记得加上自己,则有以下三种情况
最后记得算上\(mouse\)一开始所在的位置\(v\)
\[dp[u][v]+=\frac{dfs\left(b,v\right)}{\left(du[v]+1\right)} \]以上求答案的过程可用\(dfs\)解决
Code:
#include<cstdio>
#include<queue>
#define MAX 1001
#define re register
#define INF 114514
namespace OMA
{
int n,e,c,m;
int dis[MAX][MAX];
int cnt=1,head[MAX];
int du[MAX],next[MAX][MAX];
double dp[MAX][MAX];
bool pre[MAX],vis[MAX][MAX];
struct node
{
int next;
int to;
}edge[MAX<<1];
typedef std::pair<int,int>oma;
std::priority_queue<oma,std::vector<oma>,std::greater<oma> >q;
inline int read()
{
int s=0,w=1; char ch=getchar();
while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
return s*w;
}
inline void add(int u,int v)
{
edge[++cnt].next = head[u];
edge[cnt].to = v;
head[u] = cnt;
}
inline int min(int a,int b)
{ return a<b?a:b; }
void in()
{
n=read(),e=read(),c=read(),m=read();
for(re int i=1; i<=e; i++)
{
int u=read(),v=read();
add(u,v),add(v,u);
du[u]++,du[v]++;
}
for(re int i=1; i<=n; i++)
{
for(re int j=1; j<=n; j++)
{ next[i][j] = INF; }
}
}
inline void dijkstra(int u)
{
for(re int i=1; i<=n; i++)
{ dis[u][i] = INF ,pre[i] = false; }
while(!q.empty())
{ q.pop(); }
dis[u][u] = 0;
q.push(std::make_pair(0,u));
while(!q.empty())
{
int k = q.top().second;
q.pop();
if(pre[k])
{ continue; }
pre[k] = true;
for(re int i=head[k]; i; i=edge[i].next)
{
int to = edge[i].to;
if(!pre[to]&&(dis[u][to]>dis[u][k]+1))
{
dis[u][to] = dis[u][k]+1;
q.push(std::make_pair(dis[u][to],to));
}
}
}
}
inline double dfs(int cat,int mouse)
{
if(vis[cat][mouse])
{ return dp[cat][mouse]; }
if(cat==mouse)
{ return 0; }
int a,b;
a = next[cat][mouse];
b = next[a][mouse];
if(a==mouse||b==mouse)
{ return 1; }
dp[cat][mouse] = 1;
for(re int i=head[mouse]; i; i=edge[i].next)
{
int to = edge[i].to;
dp[cat][mouse] += dfs(b,to)/(du[mouse]+1);
}
dp[cat][mouse] += dfs(b,mouse)/(du[mouse]+1);
vis[cat][mouse] = 1;
return dp[cat][mouse];
}
signed main()
{
in();
for(re int i=1; i<=n; i++)
{ dijkstra(i); }
for(re int i=1; i<=n; i++)
{
for(re int j=head[i]; j; j=edge[j].next)
{
int to = edge[j].to;
for(re int k=1; k<=n; k++)
{
if(dis[i][k]-1==dis[k][to])
{ next[i][k] = min(next[i][k],to); }
}
}
}
printf("%.3lf\n",dfs(c,m));
return 0;
}
}
signed main()
{ return OMA::main(); }