描述
会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2...b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
输入第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)输出输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
样例输入
2
1
92
样例输出
15863724
84136275 把八皇后的解打表即可
#include <iostream>
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <math.h>
using namespace std;
#define LL long long #define N 8
int x[N];
int ans;
LL s[]; bool CanPlace(int row)
{
for (int i = ; i < row; i++) {
if (x[row]==x[i] || abs(row-i)==abs(x[row]-x[i]))
return ;
}
return ;
} void print()
{
/*for (int i = 0; i < N; i++)
printf("%d", x[i]+1);
printf("\n");*/
for (int i = ; i < N; i++) {
s[ans] = *s[ans] + x[i]+;
}
} void solve(int row)
{
if (row == N) {
ans++;
print();
return;
}
for (int i = ; i < N; i++) {
x[row] = i;
if (CanPlace(row))
solve(row+);
}
} int main()
{
//freopen("1.txt", "r", stdin);
memset(s, , sizeof(s));
solve();
int T;
cin >> T;
while (T--) {
int n;
cin >> n;
cout << s[n] << endl;
} return ;
}