优先队列 + 并查集 + 字典树 + 欧拉回路 + 树状数组 + 线段树 + 线段树点更新 + KMP +AC自动机 + 扫描线

这里给出基本思想和实现代码 .

优先队列 :

曾经做过的一道例题       坦克大战

 struct node
{
int x,y,step;
friend bool operator <(node s1,node s2) // 定义结构体 的时候 这个 就是 用于 优先队列的 基准排序
{
return s1.step>s2.step; // 步数小的 在上 为小顶堆
}
};
priority_queue<node>Q; // 优先队列的结构体定义说明和 生命方法

并查集 :

曾经做过的一道例题      七桥问题

int findx(int x)
{
if(x!=parent[x])
parent[x]=findx(parent[x]); // 回溯的时候压缩路径 这个是 压缩路径的精髓
return parent[x]; // 实际上我也看不出来 到底哪里好 ......
}
son :
parent :
int find(int x)
{
int k,j,r;
r = x;
while(r != parent[r]) //
r = parent[r];
k = x;
while(k != r)
{
j = parent[k];
parent[k] = r;
k = j;
}
return r;
}

字典树

曾经做过的一道题   http://www.cnblogs.com/A-FM/p/5181956.html

构造一个结构体 , 该结构体 应该有   所有指向下一排所有元素的指针域 ,  还应该有  该节点 必要的信息

 struct node
{
int number; // 该节点作为 尾节点的次数
node next[]; // 和 剩下的 指针域
};
int Insert(char *a,node *t)
{
node *p,*q;
int id,i,j,l;
p=t; // 已经开了空间
l=strlen(a);
for(i=;i<l;i++)
{
id=a[i]-'a';
if(p->next[id]==NULL) //如果 没有 这个线段的话
{
q=(node *)malloc(sizeof(node));
q->sum=;
for(j=;j<;j++)
q->next[j]=NULL;
p->next[id]=q; // 建立线段 . 线段 的 另一端 已经设置好了.
}
p=p->next[id];
}
(p->sum)++;
return p->sum;
}

欧拉回路 :

无向图存在欧拉通路 , 当且仅当改图为连通图 , 而且仅有 0 或 2 个奇数度节点   ( 不可能是 1 )  , 当有0个奇数度节点的时候为回路 , 有两个的是个为通路 .

有向图存在欧拉回路 , 当且仅当该图联通 , 且每个节点的入度 等于出度  .

有向图存在欧拉通路 , 当且仅当该图连同 除了两个节点以外的的每个节点的入度等于出度 , 在这两个节点中一个入度比出度大一 , 一个出度比入度大一(起点) .

可以用 并查集检查是否为 图是否连同

KMP算法( 俗称看毛片算法 )  :

上一篇:VS2010 配置opencv环境


下一篇:[转]从普通DLL中导出C++类 – dllexport和dllimport的使用方法(中英对照、附注解)