声明:本系列博客是根据SGG的视频整理而成,非常适合大家入门学习。
版本说明:
- Flink 1.11.2
- Kafka 2.4.0
- Hive 3.1.2
- Hadoop 3.1.3
1 hive
安装hive,使用mysql做为元数据存储
1.2 hive-site.xml 配置 (版本3.1.2)
<?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration> <property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://hadoop102:3306/metastore?createDatabaseIfNotExist=true</value> <description>JDBC connect string for a JDBC metastore</description> </property> <property> <name>javax.jdo.option.ConnectionDriverName</name> <value>com.mysql.cj.jdbc.Driver</value> <description>Driver class name for a JDBC metastore</description> </property> <property> <name>javax.jdo.option.ConnectionUserName</name> <value>root</value> <description>username to use against metastore database</description> </property> <property> <name>javax.jdo.option.ConnectionPassword</name> <value>123456</value> <description>password to use against metastore database</description> </property> <property> <name>hive.metastore.warehouse.dir</name> <value>/user/hive/warehouse</value> <description>location of default database for the warehouse</description> </property> <property> <name>hive.cli.print.header</name> <value>true</value> </property> <property> <name>hive.cli.print.current.db</name> <value>true</value> </property> <property> <name>hive.cli.print.current.db</name> <value>true</value> </property> <property> <name>hive.metastore.schema.verification</name> <value>false</value> </property> <property> <name>hive.server2.thrift.bind.host</name> <value>192.168.1.122</value> </property> <property> <name>hive.metastore.event.db.notification.api.auth</name> <value>false</value> </property> <property> <name>datanucleus.schema.autoCreateAll</name> <value>true</value> </property> <property> <name>hive.metastore.uris</name> <value>thrift://localhost:9083</value> <!-- metastore 在的pc的ip--> </property> </configuration>
2 flink(版本1.10.2)
2.1 配置conf/sql-client-hive.yaml
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ # This file defines the default environment for Flink's SQL Client. # Defaults might be overwritten by a session specific environment. # See the Table API & SQL documentation for details about supported properties. #============================================================================== # Tables #============================================================================== # Define tables here such as sources, sinks, views, or temporal tables. #tables: [] # empty list # A typical table source definition looks like: # - name: ... # type: source-table # connector: ... # format: ... # schema: ... # A typical view definition looks like: # - name: ... # type: view # query: "SELECT ..." # A typical temporal table definition looks like: # - name: ... # type: temporal-table # history-table: ... # time-attribute: ... # primary-key: ... #============================================================================== # User-defined functions #============================================================================== # Define scalar, aggregate, or table functions here. #functions: [] # empty list # A typical function definition looks like: # - name: ... # from: class # class: ... # constructor: ... #============================================================================== # Catalogs #============================================================================== # Define catalogs here. catalogs: # empty list # A typical catalog definition looks like: - name: myhive # 名字随意取 type: hive hive-conf-dir: /opt/module/hive/conf # hive-site.xml 所在的路径 # default-database: ... #============================================================================== # Modules #============================================================================== # Define modules here. #modules: # note the following modules will be of the order they are specified # - name: core # type: core #============================================================================== # Execution properties #============================================================================== # Properties that change the fundamental execution behavior of a table program. execution: # select the implementation responsible for planning table programs # possible values are 'blink' (used by default) or 'old' planner: blink # 'batch' or 'streaming' execution type: streaming # allow 'event-time' or only 'processing-time' in sources time-characteristic: event-time # interval in ms for emitting periodic watermarks periodic-watermarks-interval: 200 # 'changelog' or 'table' presentation of results result-mode: table # maximum number of maintained rows in 'table' presentation of results max-table-result-rows: 1000000 # parallelism of the program parallelism: 1 # maximum parallelism max-parallelism: 128 # minimum idle state retention in ms min-idle-state-retention: 0 # maximum idle state retention in ms max-idle-state-retention: 0 # current catalog ('default_catalog' by default) current-catalog: myhive # current database of the current catalog (default database of the catalog by default) current-database: hive # controls how table programs are restarted in case of a failures restart-strategy: # strategy type # possible values are "fixed-delay", "failure-rate", "none", or "fallback" (default) type: fallback #============================================================================== # Configuration options #============================================================================== # Configuration options for adjusting and tuning table programs. # A full list of options and their default values can be found # on the dedicated "Configuration" web page. # A configuration can look like: # configuration: # table.exec.spill-compression.enabled: true # table.exec.spill-compression.block-size: 128kb # table.optimizer.join-reorder-enabled: true #============================================================================== # Deployment properties #============================================================================== # Properties that describe the cluster to which table programs are submitted to. deployment: # general cluster communication timeout in ms response-timeout: 5000 # (optional) address from cluster to gateway gateway-address: "" # (optional) port from cluster to gateway gateway-port: 0
2.2 配置jar包
/flink-1.10.2 /lib // Flink's Hive connector.Contains flink-hadoop-compatibility and flink-orc jars flink-connector-hive_2.11-1.10.2.jar // Hadoop dependencies // You can pick a pre-built Hadoop uber jar provided by Flink, alternatively // you can use your own hadoop jars. Either way, make sure it's compatible with your Hadoop // cluster and the Hive version you're using. flink-shaded-hadoop-2-uber-2.7.5-8.0.jar // Hive dependencies hive-exec-2.3.4.jar hive-metastore-3.1.2.jar libfb303-0.9.3.jar
// kafka dependencies flink-sql-connector-kafka_2.11-1.11.2.jar
后三个JAR包都是Hive自带的,可以在${HIVE_HOME}/lib目录下找到。前两个可以通过阿里云Maven搜索GAV找到并手动下载(groupId都是org.apache.flink)。
注意:要将lib包分发到集群中其他flink机器上
3 启动
3.1 启动hadoop集群
省略。。。
3.2 启动Hive meatastore
hive --service metastore &
3.3 启动Flink
$FLINK_HOME/bin/start-cluster.sh
3.4 启动 Flink SQL Client
atguigu@hadoop102:/opt/module/flink$ bin/sql-client.sh embedded -d conf/sql-client-hive.yaml -l lib/
3.5 在Flink SQL Client中创建Hive表,指定数据源为Kafka
CREATE TABLE student( id INT, name STRING, password STRING, age INT, ts BIGINT, eventTime AS TO_TIMESTAMP(FROM_UNIXTIME(ts / 1000, 'yyyy-MM-dd HH:mm:ss')), -- 事件时间 WATERMARK FOR eventTime AS eventTime - INTERVAL '10' SECOND -- 水印 ) WITH ( 'connector.type' = 'kafka', 'connector.version' = 'universal', -- 指定Kafka连接器版本,不能为2.4.0,必须为universal,否则会报错 'connector.topic' = 'student', -- 指定消费的topic 'connector.startup-mode' = 'latest-offset', -- 指定起始offset位置 'connector.properties.zookeeper.connect' = 'hadoop000:2181', 'connector.properties.bootstrap.servers' = 'hadooop000:9092', 'connector.properties.group.id' = 'student_1', 'format.type' = 'json', 'format.derive-schema' = 'true', -- 由表schema自动推导解析JSON 'update-mode' = 'append' );
3.6 启动Kafka,发送数据
$KAFKA_HOME/bin/kafka-console-producer.sh --broker-list hadoop000:9092 --topic student
{"id":12, "name":"kevin", "password":"wong", "age":22, "ts":1603769073}
3.7 通过Flink SQL Client查询表中的数据
select * from student
参考:https://blog.csdn.net/hll19950830/article/details/109308055
错误参考:
java.lang.ClassNotFoundException: org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer
https://blog.csdn.net/qq_31866793/article/details/107487858