四个层的forward函数分析:
RoIDataLayer:读数据,随机打乱等
AnchorTargetLayer:输出所有anchors(这里分析这个)
ProposalLayer:用产生的anchors平移整图,裁剪出界、移除低于阈值的的anchors,排序后使用nms,返回顶部排名的anchors
ProposalTargetLayer:将proposals分配给gt物体。得出proposal的分类标签和box的回归目标。
紧接着之前的博客,我们继续来看faster rcnn中的AnchorTargetLayer层:
class AnchorTargetLayer(caffe.Layer):
"""
Assign anchors to ground-truth targets. Produces anchor classification
labels and bounding-box regression targets.
""" def setup(self, bottom, top):
layer_params = yaml.load(self.param_str_)
anchor_scales = layer_params.get('scales', (8, 16, 32))
self._anchors = generate_anchors(scales=np.array(anchor_scales))
self._num_anchors = self._anchors.shape[0]
self._feat_stride = layer_params['feat_stride'] if DEBUG:
print 'anchors:'
print self._anchors
print 'anchor shapes:'
print np.hstack((
self._anchors[:, 2::4] - self._anchors[:, 0::4],
self._anchors[:, 3::4] - self._anchors[:, 1::4],
))
self._counts = cfg.EPS
self._sums = np.zeros((1, 4))
self._squared_sums = np.zeros((1, 4))
self._fg_sum = 0
self._bg_sum = 0
self._count = 0 # allow boxes to sit over the edge by a small amount
self._allowed_border = layer_params.get('allowed_border', 0) height, width = bottom[0].data.shape[-2:]
if DEBUG:
print 'AnchorTargetLayer: height', height, 'width', width A = self._num_anchors
# labels
top[0].reshape(1, 1, A * height, width)
# bbox_targets
top[1].reshape(1, A * 4, height, width)
# bbox_inside_weights
top[2].reshape(1, A * 4, height, width)
# bbox_outside_weights
top[3].reshape(1, A * 4, height, width)
首先说一下这一层的目的是输出在特征图上所有点的anchors(经过二分类和回归);
(1)输入blob:bottom[0]储存特征图信息,bottom[1]储存gt框坐标,bottom[2]储存im_info信息;
(2)输出blob:top[0]存储anchors的label值(fg是1,bg是0,-1类不关心),top[1]存储的是生成的anchors的回归偏移量,即论文中的tx,ty,tw,th四个量(所以说整个faster rcnn总共两次bbox回归,第一次在RPN中,第二次在fast rcnn中),top[2]和top[3]分别存储的是bbox_inside_weights和bbox_outside_weights。
好的,先进入层的setup函数:该函数通过解析父类对自己的一些参数进行初始化,同时定义该层的输入输出blob;
该函数中要注意的是generate_anchors()函数,它的作用是产生对应与特征图上最左上角那个点的九种anchor(尺寸对应与输入图像),这9个anchor在后面被用来产生所有图像上的anchors,进入generate_anchors()函数。前面博客做过分析了,不再累述。
接着向下看该层的前向传播函数forward函数:
def forward(self, bottom, top):
# Algorithm:
#
# for each (H, W) location i
# generate 9 anchor boxes centered on cell i
# apply predicted bbox deltas at cell i to each of the 9 anchors
# filter out-of-image anchors
# measure GT overlap assert bottom[0].data.shape[0] == 1, \
'Only single item batches are supported' # map of shape (..., H, W)
height, width = bottom[0].data.shape[-2:] ##bottom[0]特征图信息,bottom[1]gt坐标,bottom[3]为im_info
# GT boxes (x1, y1, x2, y2, label)
gt_boxes = bottom[1].data
# im_info
im_info = bottom[2].data[0, :] if DEBUG:
print ''
print 'im_size: ({}, {})'.format(im_info[0], im_info[1])
print 'scale: {}'.format(im_info[2])
print 'height, width: ({}, {})'.format(height, width)
print 'rpn: gt_boxes.shape', gt_boxes.shape
print 'rpn: gt_boxes', gt_boxes # 1. Generate proposals from bbox deltas and shifted anchors
shift_x = np.arange(0, width) * self._feat_stride ##映射原图的偏移量
shift_y = np.arange(0, height) * self._feat_stride
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
shifts = np.vstack((shift_x.ravel(), shift_y.ravel(),
shift_x.ravel(), shift_y.ravel())).transpose()
# add A anchors (1, A, 4) to
# cell K shifts (K, 1, 4) to get
# shift anchors (K, A, 4)
# reshape to (K*A, 4) shifted anchors
A = self._num_anchors
K = shifts.shape[0]
all_anchors = (self._anchors.reshape((1, A, 4)) +
shifts.reshape((1, K, 4)).transpose((1, 0, 2))) ##左上角anchor进行偏移覆盖全图
all_anchors = all_anchors.reshape((K * A, 4))
total_anchors = int(K * A) # only keep anchors inside the image ,保留位置在图像内的anchors
inds_inside = np.where(
(all_anchors[:, 0] >= -self._allowed_border) &
(all_anchors[:, 1] >= -self._allowed_border) &
(all_anchors[:, 2] < im_info[1] + self._allowed_border) & # width
(all_anchors[:, 3] < im_info[0] + self._allowed_border) # height
)[0] if DEBUG:
print 'total_anchors', total_anchors
print 'inds_inside', len(inds_inside) # keep only inside anchors
anchors = all_anchors[inds_inside, :]
if DEBUG:
print 'anchors.shape', anchors.shape
########################################################################################################################
##这里的shift_x和shift_y分别对应x和y轴上的偏移量,用在之前说过的用generate_anchors()函数生成的最左上角的anchors上,
##对其进行偏移,从而获得所有图像上的anchors;all_anchors用来存储所有这些anchors,total_anchors用来存储这些anchors的数量K×A,其中,
##K是输入图像的num,A是一幅图像上anchor的num;之后作者还对这些anchors进行了筛选,超出图像边界的anchors都将其丢弃~继续:
########################################################################################################################## # label: 1 is positive, 0 is negative, -1 is dont care
labels = np.empty((len(inds_inside), ), dtype=np.float32)
labels.fill(-1) # overlaps between the anchors and the gt boxes
# overlaps (ex, gt)
overlaps = bbox_overlaps(
np.ascontiguousarray(anchors, dtype=np.float),
np.ascontiguousarray(gt_boxes, dtype=np.float)) ##n*k,重叠率
argmax_overlaps = overlaps.argmax(axis=1)
max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps]
gt_argmax_overlaps = overlaps.argmax(axis=0)
gt_max_overlaps = overlaps[gt_argmax_overlaps,
np.arange(overlaps.shape[1])]
gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0] if not cfg.TRAIN.RPN_CLOBBER_POSITIVES:
# assign bg labels first so that positive labels can clobber them
labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0 # fg label: for each gt, anchor with highest overlap
labels[gt_argmax_overlaps] = 1 # fg label: above threshold IOU
labels[max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = 1 if cfg.TRAIN.RPN_CLOBBER_POSITIVES:
# assign bg labels last so that negative labels can clobber positives
labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0
#################################################################################################################
##这一部分主要就是获得这些anchors和对应gt的最大重叠率的情况,以及正样本的划分标准:a.对于每一个gt,重叠率最大的那个anchor为fg;
##b,对于每一个gt,最大重叠率大于0.7的为fg;
#################################################################################################################
# subsample positive labels if we have too many 正样本太多就采样
num_fg = int(cfg.TRAIN.RPN_FG_FRACTION * cfg.TRAIN.RPN_BATCHSIZE)
fg_inds = np.where(labels == 1)[0]
if len(fg_inds) > num_fg:
disable_inds = npr.choice(
fg_inds, size=(len(fg_inds) - num_fg), replace=False)
labels[disable_inds] = -1 # subsample negative labels if we have too many
num_bg = cfg.TRAIN.RPN_BATCHSIZE - np.sum(labels == 1)
bg_inds = np.where(labels == 0)[0]
if len(bg_inds) > num_bg:
disable_inds = npr.choice(
bg_inds, size=(len(bg_inds) - num_bg), replace=False)
labels[disable_inds] = -1
#print "was %s inds, disabling %s, now %s inds" % (
#len(bg_inds), len(disable_inds), np.sum(labels == 0)) bbox_targets = np.zeros((len(inds_inside), 4), dtype=np.float32)
bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :]) bbox_inside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
bbox_inside_weights[labels == 1, :] = np.array(cfg.TRAIN.RPN_BBOX_INSIDE_WEIGHTS) bbox_outside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
if cfg.TRAIN.RPN_POSITIVE_WEIGHT < 0:
# uniform weighting of examples (given non-uniform sampling)
num_examples = np.sum(labels >= 0)
positive_weights = np.ones((1, 4)) * 1.0 / num_examples
negative_weights = np.ones((1, 4)) * 1.0 / num_examples
else:
assert ((cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) &
(cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1))
positive_weights = (cfg.TRAIN.RPN_POSITIVE_WEIGHT /
np.sum(labels == 1))
negative_weights = ((1.0 - cfg.TRAIN.RPN_POSITIVE_WEIGHT) /
np.sum(labels == 0))
bbox_outside_weights[labels == 1, :] = positive_weights
bbox_outside_weights[labels == 0, :] = negative_weights if DEBUG:
self._sums += bbox_targets[labels == 1, :].sum(axis=0)
self._squared_sums += (bbox_targets[labels == 1, :] ** 2).sum(axis=0)
self._counts += np.sum(labels == 1)
means = self._sums / self._counts
stds = np.sqrt(self._squared_sums / self._counts - means ** 2)
print 'means:'
print means
print 'stdevs:'
print stds # map up to original set of anchors
##这里则是通过_unmap()函数实现将之前在所有图像上产生的anchors都赋上label、bbox_targets、bbox_inside_weights、bbox_outside_weights属性
labels = _unmap(labels, total_anchors, inds_inside, fill=-1)
bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0)
bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0)
bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0) if DEBUG:
print 'rpn: max max_overlap', np.max(max_overlaps)
print 'rpn: num_positive', np.sum(labels == 1)
print 'rpn: num_negative', np.sum(labels == 0)
self._fg_sum += np.sum(labels == 1)
self._bg_sum += np.sum(labels == 0)
self._count += 1
print 'rpn: num_positive avg', self._fg_sum / self._count
print 'rpn: num_negative avg', self._bg_sum / self._count # labels
labels = labels.reshape((1, height, width, A)).transpose(0, 3, 1, 2)
labels = labels.reshape((1, 1, A * height, width))
top[0].reshape(*labels.shape)
top[0].data[...] = labels # bbox_targets
bbox_targets = bbox_targets \
.reshape((1, height, width, A * 4)).transpose(0, 3, 1, 2)
top[1].reshape(*bbox_targets.shape)
top[1].data[...] = bbox_targets # bbox_inside_weights
bbox_inside_weights = bbox_inside_weights \
.reshape((1, height, width, A * 4)).transpose(0, 3, 1, 2)
assert bbox_inside_weights.shape[2] == height
assert bbox_inside_weights.shape[3] == width
top[2].reshape(*bbox_inside_weights.shape)
top[2].data[...] = bbox_inside_weights # bbox_outside_weights
bbox_outside_weights = bbox_outside_weights \
.reshape((1, height, width, A * 4)).transpose(0, 3, 1, 2)
assert bbox_outside_weights.shape[2] == height
assert bbox_outside_weights.shape[3] == width
top[3].reshape(*bbox_outside_weights.shape)
top[3].data[...] = bbox_outside_weights
这一部分是生成bbox_targets、bbox_inside_weights、bbox_inside_weights;其中对于bbox_targets,它这里是调用了_compute_targets()函数,见:
def _compute_targets(ex_rois, gt_rois):
"""Compute bounding-box regression targets for an image.""" assert ex_rois.shape[0] == gt_rois.shape[0]
assert ex_rois.shape[1] == 4
assert gt_rois.shape[1] == 5 return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32, copy=False)
在该函数又接着调用了bbox_transform函数,见:
def bbox_transform(ex_rois, gt_rois):
ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0
ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0
ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths
ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + 1.0
gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + 1.0
gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths
gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths
targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights
targets_dw = np.log(gt_widths / ex_widths)
targets_dh = np.log(gt_heights / ex_heights) targets = np.vstack(
(targets_dx, targets_dy, targets_dw, targets_dh)).transpose()
return targets
从而得到了论文中所需要的四个偏移量tx,ty,tw,th四个量;
而对于后两个bbox_inside_weights和bbox_outside_weights,函数中定义的是bbox_inside_weights初始化为n×4的0数组,然后其中正样本的坐标的权值均为1;而bbox_outside_weights同样的初始化,其中正样本和负样本都被赋值1/num(anchors的数量)。